- 硬件练习生系列(六)——LDO设计自学心得
炸洋芋Zy.
硬件工程嵌入式硬件单片机
一、LDO稳压原理LDO(LowDropoutRegulator,低压差线性稳压器)是一种线性稳压电路,其核心功能是将输入电压转换为稳定的输出电压,且输入与输出之间的压差(DropoutVoltage)非常低(通常在几百毫伏以内)。1.基本结构LDO主要由以下关键模块组成:调整元件(PassElement):通常为PNP或PMOS晶体管,负责调节输入到输出的电流。误差放大器(ErrorAmplif
- 蓝桥每日打卡--区间移位
xxjiaz
算法蓝桥杯数据结构java
#蓝桥#JAVA#区间移位题目描述数轴上有n个闭区间:D1,⋯Dn。其中区间Di用一对整数[ai,bi]来描述,满足ai≤bi。已知这些区间的长度之和至少有。所以,通过适当的移动这些区间,你总可以使得他们的"并"覆盖[0,],也就是说[0,]这个区间内的每一个点都落于至少一个区间内。你希望找一个移动方法,使得位移差最大的那个区间的位移量最小。具体来说,假设你将Di移动到[ai+ci,bi+ci]这
- 【nnUnetv2】Code复现
是Winky啊
#项目nnUnet人工智能深度学习
作者提出一种nnUNet(no-new-Net)框架,基于原始的UNet(很小的修改),不去采用哪些新的结构,如相残差连接、dense连接、注意力机制等花里胡哨的东西。相反的,把重心放在:预处理(resampling和normalization)、训练(loss,optimizer设置、数据增广)、推理(patch-based策略、test-time-augmentations集成和模型集成等)、
- 北斗导航|接收机自主完好性监测算法研究现状及发展趋势
单北斗SLAMer
卫星导航毕业论文设计算法
接收机自主完好性监测(RAIM)算法是保障卫星导航系统可靠性的核心技术,其研究现状与发展趋势可从算法设计、多系统融合、智能化技术等方面进行分析。以下基于现有研究成果及行业动态进行总结:一、研究现状传统故障检测算法RAIM的核心目标是通过冗余观测值检测并隔离故障卫星。早期研究聚焦单星故障场景,主要方法包括:残差分析法:通过比较观测残差与阈值判断故障,如最小二乘残差和法、奇偶矢量法等。距离比较法:基于
- 基于MATLAB路径规划仿真 轨迹规划,船舶轨迹跟踪控制,数学模
985计算机硕士
仿真模型matlab开发语言
MATLAB路径规划仿真轨迹规划,船舶轨迹跟踪控制,数学模MATLAB路径规划仿真轨迹规划,船舶轨迹跟踪控制,数学模型基于两轮差速的小车模型,用PID环节对航向角进行控制,迫使小车走向目标,或用PID环节对航向角和距离进行控制,迫使小车走向目标LQR算法可自行小车起点坐标文章目录初始化环境定义PID控制函数运行仿真代码说明:代码示例代码说明:为了实现基于两轮差速模型的小车在MATLAB中的路径规划
- 精挑20题:MySQL 8.0高频面试题深度解析——掌握核心知识点、新特性和优化技巧
dblens 数据库管理和开发工具
mysqlmysql数据库面试
1.MySQL8.0中,为什么查询缓存被移除?答案:原因:查询缓存对频繁更新的表效果差,任何对该表的写操作都会清空所有相关缓存,导致缓存命中率低,反而增加开销。替代方案:使用应用层缓存(如Redis)。优化查询和索引,减少对缓存的依赖。MySQL8.0改进:通过索引优化、并行查询等提升性能,弥补查询缓存缺失的影响。2.InnoDB的行锁和表锁分别在什么场景下使用?答案:行锁:高并发场景下更新或查询
- 【新能源集成热管理系统的开发与优化】
新能源汽车--三电老K
研发测试汽车学习方法
新能源集成热管理系统的开发与优化涉及多阶段的试验、标定和策略调整,需结合实验室仿真、环境仓测试及实车道路验证,以应对高低温、极端气候等复杂工况。以下是具体实施方法:一、环境仓试验室测试系统标定与基础验证模型搭建:通过AMESim等仿真工具建立机-电-热耦合模型,涵盖电池、电机、空调等子系统,分析高温工况下各部件能耗占比及整车续航表现。参数标定:在环境仓中模拟极端温度(如38℃高温或-30℃低温),
- 零基础掌握分布式ID生成:从理论到实战的完整指南 [特殊字符]
添砖Java中
分布式分布式idjava
一、为什么需要分布式ID?在单机系统中,使用数据库自增ID就能满足需求。但在分布式系统中,多个服务节点同时生成ID时会出现以下问题:ID冲突:不同节点生成相同ID扩展困难:数据库自增ID无法水平扩展安全性差:连续ID暴露业务数据量性能瓶颈:高并发场景下生成速度慢典型应用场景:✅电商订单号生成✅社交平台用户ID✅物流运单号生成✅金融交易流水号二、分布式ID的核心要求特性说明重要性全局唯一性整个分布式
- 神经网络基础之正则化
硬水果糖
人工智能神经网络人工智能机器学习
引言:正则化(Regularization)是机器学习中一种用于防止模型过拟合技术。核心思想是通过在模型损失函数中添加一个惩罚项(PenaltyTerm),对模型的复杂度进行约束,从而提升模型在新数据上的泛化能力。一、正则化目的防止过拟合:当模型过于复杂(例如神经网络层数过多、参数过多)时,容易在训练数据上“记忆”噪声或细节,导致在测试数据上表现差。简化模型:正则化通过限制模型参数的大小或数量,迫
- 【图像处理基石】什么是HDR图片?
AndrewHZ
AI算法工程师面试指北图像处理基石图像处理算法计算机视觉HDR高动态范围包围曝光opencv
1.什么是HDR图片?HDR(高动态范围图像,HighDynamicRange)是一种通过技术手段扩展照片明暗细节的成像方式。以下是关于HDR的详细说明:核心原理动态范围:指图像中最亮和最暗区域之间的亮度差。人眼能感知的动态范围远高于普通相机,HDR通过合成多张不同曝光的照片(如欠曝、正常、过曝),平衡高光和阴影细节。HDR的优势保留细节:避免强光下过曝(如天空发白)或阴影中欠曝(如暗部死黑)。增
- 深度革命:ResNet 如何用 “残差连接“ 颠覆深度学习
安意诚Matrix
机器学习笔记深度学习人工智能
一文快速了解ResNet创新点在深度学习的历史长河中,2015年或许是最具突破性的一年。这一年,微软亚洲研究院的何恺明团队带着名为ResNet(残差网络)的模型横空出世,在ImageNet图像分类竞赛中以3.57%的错误率夺冠,将人类视觉的识别误差(约5.1%)远远甩在身后。更令人震撼的是,ResNet将神经网络的深度推至152层,彻底打破了"深层网络无法训练"的魔咒。这场革命的核心,正是一个简单
- 电子元件精度识别表汇总
CircuitWizard
硬件工程
电子器件精度(容差)汇总表器件类型参数类型代码/颜色精度范围说明电阻色环容差金色±5%通用电阻(最后一环)银色±10%普通电阻棕色±1%精密电阻红色±2%精密电阻绿色±0.5%高精度电阻蓝色±0.25%超高精度电阻紫色±0.1%超高精度电阻无色±20%早期电阻贴片容差(数字编码容差)F±1%如“103F”=10kΩ±1%G±2%J±5%K±10%电容字母容差J±5%薄膜电容、高频陶瓷电容K±10%
- JG/T 331-2011建筑幕墙用氟碳铝单板制品检测
Tongyongtest88
建筑材料检测铝单板检测氟碳铝单板检测检测报告
幕墙氟碳铝单板制品是指以铝合金板为基材,经加工成型,装饰面为氟碳涂层,用于建筑幕墙的单层板,按照涂装工艺的不同,分为辊涂和液体喷涂。JG/T331-2011建筑幕墙用氟碳铝单板制品检测项目:测试项目测试方法涂层厚度GB/T4957光泽度偏差GB/T9754涂层附着力GB/T9286铅笔硬度GB/T6739耐盐酸JG/T331耐硝酸JG/T331耐砂浆JG/T331耐溶剂JG/T331耐磨GB/T2
- Tcp/UDP协议详解
寂寂寂寂寂蝶丶
tcp/ip网络网络协议
为什么会有TCP/IP协议在世界上各地,各种各样的电脑运行着各自不同的操作系统为大家服务,这些电脑在表达同一种信息的时候所使用的方法是千差万别。就好像圣经中上帝打乱了各地人的口音,让他们无法合作一样。计算机使用者意识到,计算机只是单兵作战并不会发挥太大的作用。只有把它们联合起来,电脑才会发挥出它最大的潜力。于是人们就想方设法的用电线把电脑连接到了一起。但是简单的连到一起是远远不够的,就好像语言不同
- 【认知框架重构】
调皮的芋头
人工智能神经网络
在信息高度互联的今天,寻找信息洼地和利益洼地已成为获取超额收益的核心能力。这两种"洼地"本质上是市场非有效性的具象化表现,其形成机制和挖掘方法值得系统研究。以下从底层逻辑到操作层面的深度分析:一、认知框架重构时空差理论:信息传播存在物理时滞(如跨境政策变化)、认知时滞(专业门槛导致的理解延迟)、传播层级衰减(信息在传递中的失真)熵增对抗模型:市场参与者维持信息优势需要持续负熵输入,当维护成本超过收
- 第4章:二房东都怕你知道:用DeepSeek让隔断房电表不再吃人
m0_65737849
运维前端网络
第4章:二房东都怕你知道:用DeepSeek让隔断房电表不再吃人——前电力稽查工程师的隐蔽战场纪实4.1租约里的隐藏税上海某城中村的调查报告触目惊心:67%的隔断房存在电表加速现象,普通单间月耗电量竟高达287度——相当于每天开着1.5匹空调连续制冷15小时。国家电网反窃电实验室的对比测试显示,改装电表的计量误差可达+43%,这意味着租客每年要白白多付794元电费,足够买下24杯星冰乐。上周我收到
- SMT贴片加工厂厂房承重能力要求
贴片机
smt
SMT贴片加工厂厂房承重能力要求SMT贴片加工大部分都是重型设备,尤其是贴片机、回流焊等设备,有些重达几顿、十几吨,因此厂房承重必须符合规范,如果厂房承重差,极有可能造成坍塌,并且SMT产线都是整线设备摆放,对厂房局部承重压力大,因此厂房承重能力是SMT贴片厂必须认真审视的问题,下面英特丽为大家介绍厂房承重能力的要求。厂房承重能力决定能够摆放多少SMT设备,事先必须经过厂房承重检测机构进行检测鉴定
- 深入理解Java工厂方法模式:原理剖析与实战应用
小诸葛IT课堂
java工厂方法模式开发语言
一、为什么要学习工厂方法模式?在软件开发中,对象创建是最常见的操作之一。当我们需要创建的对象类型存在多种可能,或者对象的创建过程较为复杂时,如果直接在业务代码中使用new关键字进行实例化,会导致以下问题:代码耦合度高难以扩展新的产品类型违反开闭原则(对扩展开放,对修改关闭)代码重复和可维护性差工厂方法模式(FactoryMethodPattern)正是为了解决这些问题而诞生的经典设计模式。它被广泛
- Dropout: 一种减少神经网络过拟合的技术
冰蓝蓝
自然语言处理神经网络人工智能深度学习
在深度学习中,过拟合是一个常见的问题,尤其是在模型复杂度较高或训练数据较少的情况下。过拟合意味着模型在训练数据上表现得很好,但在未见过的数据上表现不佳,即泛化能力差。为了解决这个问题,研究者们提出了多种正则化技术,其中之一就是Dropout。什么是Dropout?Dropout是一种正则化技术,由Hinton和他的学生在2012年提出。它通过在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元
- 证券交易系统核心技术解析:LinkTrader 的毫秒级响应架构与风控实践
Ashlee_code
架构pythonjavac++
一、行业痛点:为什么传统交易系统正在被淘汰?2024年,证券行业guweng22346的技术竞争已从“功能完备”转向**“速度+智能”的极限博弈**。以下是传统系统的三大致命缺陷:数据延迟:非官方行情源导致套利窗口丢失(实测延迟普遍>0.1秒);风控低效:依赖人工监控,凌晨时段风险拦截率不足30%;扩展性差:单体架构下订单处理峰值低于10万/秒,极易崩溃。典型案例:某券商因系统延迟0.05秒,单日
- GitHub图床
Thinking_calculus
Linuxgithub
GitHub之图床github当图床使用的方法了解了,最简单的、安全的方式是创建一个私有库,通过发起issue的方式把想要保存的图片放在issue区title中可以添加便于记忆的字段,虽然大概率以后不会用到,但如果需要时可以使用爬虫爬取issue保存下来,也便于查找之前还有些照片以仓库的形式同步在这个仓库中,但取url这个过程十分麻烦,不过如果是用于储存大量照片的话,使用仓库同步的方式可能不会差,
- C Sharp委托、事件、多线程
微笑伴你而行
#csharpc语言开发语言
文章目录委托(Delegate)——你的“遥控器”事件(Event)——安全的“通知系统”多线程(Multithreading)——“同时做多件事”委托(Delegate)——你的“遥控器”是什么?想象你有一个万能遥控器,可以控制家里的电视、空调、灯光。委托就是这个“遥控器”,它允许你通过一个东西调用多个不同的方法。为什么需要它?比如你想写一个程序,让用户点击按钮时执行某些操作,但具体操作可能随时
- Transformer 架构深度剖析
时光旅人01号
人工智能技术科普transformer深度学习人工智能condaopencv计算机视觉
一、Transformer架构核心设计1.1整体架构Transformer由编码器(Encoder)和解码器(Decoder)堆叠而成,每个层包含:多头自注意力(Multi-HeadSelf-Attention)前馈网络(Feed-ForwardNetwork,FFN)残差连接(ResidualConnection)和层归一化(LayerNorm)关键特性:完全基于注意力机制,摒弃了循环和卷积结构
- 2025-03-13 学习记录--C/C++-PTA 练习2-9 整数四则运算
小呀小萝卜儿
学习-C/C++学习c语言
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。一、题目描述⭐️练习2-9整数四则运算本题要求编写程序,计算2个正整数的和、差、积、商并输出。题目保证输入和输出全部在整型范围内。输入格式:输入在一行中给出2个正整数A和B。输出格式:在4行中按照格式“A运算符B=结果”顺序输出和、差、积、商。输入样例:32输出样例:3+2=53-2=13*2=63/2=1二、代码(C语言)⭐️#incl
- 信号传输与通信:光纤通信中的信号处理_(13).光纤通信中的色散管理
kkchenkx
信号处理技术仿真模拟信号处理网络
光纤通信中的色散管理色散的基本概念色散是光纤通信中的一个关键问题,它会导致信号在传输过程中发生失真。色散主要分为两类:模态色散和色度色散。模态色散模态色散主要发生在多模光纤中。多模光纤允许多个模式同时传播,但由于每个模式的传播速度不同,导致不同模式的光在光纤中传播的时间不同。这种时间差会导致信号的展宽,从而引起失真。色度色散色度色散主要发生在单模光纤中。色度色散是由于不同波长的光在光纤中的传播速度
- 新手村:数据预处理-异常值检测方法
嘉羽很烦
机器学习机器学习
机器学习中异常值检测方法一、前置条件知识领域要求编程基础Python基础(变量、循环、函数)、JupyterNotebook或PyCharm使用。统计学基础理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。机器学习基础熟悉监督/无监督学习、分类、聚类、回归等基本概念。数据预处理数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。二、渐进式学习
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- 新手村:统计量均值、中位数、标准差、四分位数
嘉羽很烦
机器学习均值算法算法
新手村:统计量均值、中位数、标准差、四分位数统计量定义与讲解统计量定义计算公式示例说明均值数据集中的所有数值之和除以数值的个数。Mean=∑i=1nxin\text{Mean}=\frac{\sum_{i=1}^{n}x_i}{n}Mean=n∑i=1nxi对于数据集[1,2,3,4,5],均值为(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3中位数将数据
- 主流开源大模型能力对比矩阵
时光旅人01号
人工智能开源python深度学习pytorch
模型名称核心优势主要局限Llama2/3✅多语言生态完善✅Rotary位置编码✅GQA推理加速⚠️数据时效性差⚠️隐私保护不足Qwen✅千亿参数规模✅中文语境优化✅复杂文本生成⚠️需高性能硬件⚠️领域知识需二次训练ChatGLM-3✅多轮对话支持✅中英双语流畅✅对话记忆优秀⚠️计算资源消耗大⚠️长文本易发散DeepSeek✅代码注释生成✅技术文档规范✅全流程方案生成⚠️逻辑错误较多⚠️数据更新延迟
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要