Help on class complex in module __builtin__:
class complex(object)
| complex(real[, imag]) -> complex number
|
| Create a complex number from a real part and an optional imaginary part.
| This is equivalent to (real + imag*1j) where imag defaults to 0.
|
| Methods defined here:
|
| __abs__(...)
| x.__abs__() <==> abs(x)
|
| __add__(...)
| x.__add__(y) <==> x+y
|
| __coerce__(...)
| x.__coerce__(y) <==> coerce(x, y)
|
| __div__(...)
| x.__div__(y) <==> x/y
|
| __divmod__(...)
| x.__divmod__(y) <==> divmod(x, y)
|
| __eq__(...)
| x.__eq__(y) <==> x==y
|
| __float__(...)
| x.__float__() <==> float(x)
|
| __floordiv__(...)
| x.__floordiv__(y) <==> x//y
|
| __ge__(...)
| x.__ge__(y) <==> x>=y
|
| __getattribute__(...)
| x.__getattribute__('name') <==> x.name
|
| __getnewargs__(...)
|
| __gt__(...)
| x.__gt__(y) <==> x>y
|
| __hash__(...)
| x.__hash__() <==> hash(x)
|
| __int__(...)
| x.__int__() <==> int(x)
|
| __le__(...)
| x.__le__(y) <==> x<=y
|
| __long__(...)
| x.__long__() <==> long(x)
|
| __lt__(...)
| x.__lt__(y) <==> x | | __mod__(...) | x.__mod__(y) <==> x%y | | __mul__(...) | x.__mul__(y) <==> x*y | | __ne__(...) | x.__ne__(y) <==> x!=y | | __neg__(...) | x.__neg__() <==> -x | | __nonzero__(...) | x.__nonzero__() <==> x != 0 | | __pos__(...) | x.__pos__() <==> +x | | __pow__(...) | x.__pow__(y[, z]) <==> pow(x, y[, z]) | | __radd__(...) | x.__radd__(y) <==> y+x | | __rdiv__(...) | x.__rdiv__(y) <==> y/x | | __rdivmod__(...) | x.__rdivmod__(y) <==> divmod(y, x) | | __repr__(...) | x.__repr__() <==> repr(x) | | __rfloordiv__(...) | x.__rfloordiv__(y) <==> y//x | | __rmod__(...) | x.__rmod__(y) <==> y%x | | __rmul__(...) | x.__rmul__(y) <==> y*x | | __rpow__(...) | y.__rpow__(x[, z]) <==> pow(x, y[, z]) | | __rsub__(...) | x.__rsub__(y) <==> y-x | | __rtruediv__(...) | x.__rtruediv__(y) <==> y/x | | __str__(...) | x.__str__() <==> str(x) | | __sub__(...) | x.__sub__(y) <==> x-y | | __truediv__(...) | x.__truediv__(y) <==> x/y | | conjugate(...) | complex.conjugate() -> complex | | Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j. | | ---------------------------------------------------------------------- | Data descriptors defined here: | | imag | the imaginary part of a complex number | | real | the real part of a complex number | | ---------------------------------------------------------------------- | Data and other attributes defined here: | | __new__ = | T.__new__(S, ...) -> a new object with type S, a subtype of T class complex([real[, imag]]) Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If the first parameter is a string, it will be interpreted as a complex number and the function must be called without a second parameter. The second parameter can never be a string. Each argument may be any numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion function like int(), long() and float(). If both arguments are omitted, returns 0j. Note When converting from a string, the string must not contain whitespace around the central + or - operator. For example, complex('1+2j') is fine, but complex('1 + 2j') raises ValueError. The complex type is described in Numeric Types — int, float, long, complex. 中文说明: 创建一个值为real + imag * j的复数或者转化一个字符串或数为复数。如果第一个参数为字符串,则不需要指定第二个参数。 参数real: int, long, float或字符串; 参数imag: int, long, float。 >>> complex(5,3) (5+3j) >>> complex(7) (7+0j) >>> complex("56") (56+0j) >>> complex("7+8j") (7+8j) >>> complex("7 + 8j") Traceback (most recent call last): File " ValueError: complex() arg is a malformed string