GO数据库介绍(转载)

为了查找某个研究领域的相关信息,生物学家往往要花费大量的时间,不同的生物学数据库可能会使用不同的术语,好比是一些方言一样,这让信息查找更加麻烦,尤其是使得机器查找无章可循。Gene Ontology就是为了解决这种问题而发起的一个项目。

GO的目的:

类似于语义网络。是为了生物界有一个统一的数据交流语言。 因为在生物学界,存在在种种同名异义、异议同名的现象。为此产生了GO项目。

GO的本质:

GO是用一套统一的词汇表来描述生物学中的分子功能、生物过程和细胞成分。其思想大概过程:对于一个基因产品(蛋白质或RNA),用某些词汇来描述它是干什么的或位于细胞哪里、或者参与了哪个生物过程,而这些词汇就是来自GO的Term。

GO知识库由两个主要部分组成:

(1)提供生物学功能(术语)的逻辑结构及其相互之间的关系,表现为有向无环图
(2)给特定的基因产物(蛋白质,非编码RNA或大分子复合体,简称为'基因')起一个特定的名字(唯一标识该基因)

GO term

Gene Ontology(GO)中最基本的概念是term。GO里面的每一个entry都有一个唯一的数字标记,形如GO:nnnnnnn,还有一个term名,比如"cell", "fibroblast growth factor receptor binding",或者"signal transduction"。每个term都属于一个ontology,总共有三个ontology,它们分别是
细胞成分:细胞的部分或其细胞外环境;
分子功能:基因产物在分子水平上的元素活性,例如结合或催化;
生物过程:具有确定开始和结束的分子事件的操作或集合,与综合生活单元的功能有关

为什么这样做?

一个基因product可能会出现在不止一个细胞成分里面,也可能会在很多生物过程里面起作用,并且在其中发挥不同的分子功能。比如,基因product "cytochrome c" 用分子功能术语描述是"oxidoreductase activity",而用生物过程术语描述就是"oxidative phosphorylation"和“induction of cell death”,最后,他的细胞成分是“mitochondrial matrix”和"mitochondrial inner membrane"。

GO term结构

Ontology中的term有两种相互关系,它们分别是is_a关系和part_of关系。is_a关系是一种简单的包含关系,比如A is_a B表示A是B的一个子集/子类。比如nuclear chromosome is_a chromosome。part_of关系要稍微复杂一点,C part_of_D意味着如果C出现,那么它就肯定是D的一部分/组成成分,但C不一定总会出现。比如nucleus part_of cell,核肯定是细胞的一部分,但有的细胞没有核。(额,听起来有些复杂)
Ontology的结构是一个有向无环图,有点类似于分类树,不同点在于 Ontology的结构中一个term可以有不止一个parent。比如 生物过程 "hexose biosynthesis" 有两个parents,它们分别是"hexose metabolism"和"monosaccharide biosynthesis",这是因为生物合成是代谢的一种,而己糖又是单糖的一种。(可以简单地理解为一个单向的迷宫网络)

GO term的描述格式:
GO数据库介绍(转载)_第1张图片
term
GO注释

基因本体注释的最常见用途是解释大规模分子生物学实验,有时称为“组学”实验。这些实验测量:
1)基因产物(rna和蛋白质),
2)dna基因序列的变异,
3)由蛋白质代谢的小分子。因此它们都可能与基因功能有关。
通常一个典型的组学实验会测量数千个分子的表达量等水平,这样就使得人们很难解释潜在的分子变化(例如在癌细胞和正常细胞之间)。而“GO富集分析”可以确定相互作用的相关基因组,从而可以将数以千计的分子变化减少,定位到少得多的生物功能上,进而有可能了解分子变化的含义。

GO注释的格式:
GO数据库介绍(转载)_第2张图片
注释
为什么用GO?

理由一:
  在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。
  根据GO的知识体系,使用“功能类”(或者叫做“功能模块”)这一概念具有以下优点:我们认为,单个基因的表达情况的改变不足以反映特定功能/通路的整体变化情况。因为类似人类社会的组织结构,生物体的功能的实现决不仅仅是依靠一两个基因功能的改变来实现的。因此过分着重单个基因表达变化,将会在后期结果处理中严重干扰对于结果的合理分析,导致偏倚性加大,而且是无法避免的。因此利用GO的结构体系,把参与同样功能/通路的基因进行“功能类”层面的抽象和整合,提供比基因更高一层次的抽象结论,对理解疾病的发病机制或药物的作用机理等更有帮助。
  但是该方法也存在一定的不足,由于生物体内部的调控网络可能具有“scale-free network”的特点,个别功能重要的基因(主效基因)具有“Hub节点”的重要特性,它的功能改变可能对于整个网络来说是至关重要的,在这点上,这些重要的基因又具有一定的“自私独裁”特点。而“功能类”之观点模糊了这种差别特性,过于强调“共性”,而忽视了“个性”,这也是“功能类”的一个不足之处,这就需要结合相关的生物学知识才能够实现

理由二:
  GO(gene ontology)对大家而言也许会是一个相对陌生的名词,但是它已经成为生物信息领域中一个极为重要的方法和工具,并正在逐步改变着我们对 biological data的组织和理解方式,它的存在已经大大加快了我们对所拥有的生物数据的整合和利用,我们应该逐步学会理解和掌握这种思想和工具。
  众所周知,sequence based biology中的核心内容即是对序列的Annotation(注释),其中主要包含structural annotation和functional annotation,前者涉及分析sequence在genome中的locus以及exon,intron,promoter等的location,而后者则是推断序列编码产物的功能  
  随着多种生物genome的相继解码,同时大量ESTs以及gene expression profile date的积累,使得annotation的工作量和复杂度大大增加。然而另一方面,大多数基因在不同真核生物中拥有共同的主要生物功能,通过在某些物种中获得的基因或者蛋白质(shared protein)的生物学信息,可以用以解释其他物种中对应的基因或蛋白(especially in comparative genomics)。由于这些繁复的功能信息主要是包含在积累的文献之中,如何有效的提取和综合这些信息就是我们面临的核心困难,这也是GO所要着力解决的问题。通过建立一套具有动态形式的控制字集(controlled vocabulary),来解释真核基因及蛋白在细胞内所扮演的角色,并随着生命科学研究的进步,不断积累和更新。一个ontology会被一个控制字集来描述并给予一定的名称,通过制定“本体”ontologies并运用统计学方法及自然语言处理技术,可以实现知识管理的专家系统控制

总结:
  Gene Ontology(GO)包含了基因参与的生物过程,所处的细胞位置,发挥的分子功能三方面功能信息,并将概念粗细不同的功能概念组织成DAG(有向无环图)的结构。
  Gene Ontology是一个使用有控制的词汇表和严格定义的概念关系,以有向无环图的形式统一表示各物种的基因功能分类体系,从而较全面地概括了基因的功能信息,纠正了传统功能分类体系中常见的维度混淆问题。
  在基因表达谱分析中,GO常用于提供基因功能分类标签和基因功能研究的背景知识。利用GO的知识体系和结构特点,旨在发掘与基因差异表达现象关联的单个特征基因功能类或多个特征功能类的组合。
原文:https://mp.weixin.qq.com/s/e4BkqkMt7L9ZS_KBuv2rvQ

你可能感兴趣的:(GO数据库介绍(转载))