克隆三个主机,修改主机名分别为hadoop01,hadoop02,hadoop03:
[root@hadoop01 ~]# hostname
hadoop01
[root@hadoop01 ~]# cat /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=hadoop01
[root@hadoop01 ~]# vi /etc/sysconfig/network
[root@hadoop01 ~]# cat /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=hadoop02
[root@hadoop01 ~]# reboot
配置三台机器:
[root@hadoop01 ~]# vi /etc/hosts
[root@hadoop01 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.216.135 hadoop01
192.168.216.136 hadoop02
192.168.216.137 hadoop03
服务器功能规划
hadoop01 | hadoop02 | hadoop03 |
---|---|---|
NameNode | ||
DataNode | DataNode | DataNode |
NodeManager | NodeManager | NodeManager |
HistoryServer | ResourceManager | SecondaryNameNode |
1,在第一台机器上安装新的Hadoop
为了和之前机器上安装伪分布式Hadoop区分开来,我们将第一台机器上的Hadoop服务都停止掉,然后在一个新的目录/opt/modules/app下安装另外一个Hadoop。我们采用先在第一台机器上解压、配置Hadoop,然后再分发到其他两台机器上的方式来安装集群。
2,解压Hadoop目录
3,配置Hadoop JDK路径修改hadoop-env.sh、mapred-env.sh、yarn-env.sh文件中的JDK路径
4,配置core-site.xml
[root@hadoop01 hadoop]# vi core-site.xml
[root@hadoop01 hadoop]# cat core-site.xml
fs.defaultFS
hdfs://hadoop01:8020
hadoop.tmp.dir
/opt/modules/app/hadoop-2.5.0/data/tmp
[root@hadoop01 hadoop]#
fs.defaultFS为NameNode的地址。
hadoop.tmp.dir为hadoop临时目录的地址,默认情况下,NameNode和DataNode的数据文件都会存在这个目录下的对应子目录下。应该保证此目录是存在的,如果不存在,先创建。
5,配置hdfs-site.xml
[root@hadoop01 hadoop]# vi hdfs-site.xml
[root@hadoop01 hadoop]# cat hdfs-site.xml
dfs.namenode.secondary.http-address
hadoop03:50090
dfs.namenode.secondary.http-address是指定secondaryNameNode的http访问地址和端口号,因为在规划中,我们将hadoop03规划为SecondaryNameNode服务器。
6,配置slaves
[root@hadoop01 hadoop]# vi /opt/modules/app/hadoop/etc/hadoop/slaves
[root@hadoop01 hadoop]# cat /opt/modules/app/hadoop/etc/hadoop/slaves
hadoop01
hadoop02
hadoop03
slaves文件是指定HDFS上有哪些DataNode节点。
7,配置yarn-site.xml
[root@hadoop01 hadoop]# vi yarn-site.xml
[root@hadoop01 hadoop]# cat yarn-site.xml
yarn.nodemanager.aux-services
mapreduce_shuffle
yarn.resourcemanager.hostname
hadoop02
yarn.log-aggregation-enable
true
yarn.log-aggregation.retain-seconds
106800
根据规划yarn.resourcemanager.hostname这个指定resourcemanager服务器指向hadoop02。
yarn.log-aggregation-enable是配置是否启用日志聚集功能。
yarn.log-aggregation.retain-seconds是配置聚集的日志在HDFS上最多保存多长时间。
8,配置mapred-site.xml
[root@hadoop01 hadoop]# vi mapred-site.xml
[root@hadoop01 hadoop]# cat mapred-site.xml
mapreduce.framework.name
yarn
mapreduce.jobhistory.address
hadoop01:10020
mapreduce.jobhistory.webapp.address
hadoop01:19888
mapreduce.framework.name设置mapreduce任务运行在yarn上。
mapreduce.jobhistory.address是设置mapreduce的历史服务器安装在hadoop01机器上。
mapreduce.jobhistory.webapp.address是设置历史服务器的web页面地址和端口号。
9,设置SSH无密码登录
Hadoop集群中的各个机器间会相互地通过SSH访问,每次访问都输入密码是不现实的,所以要配置各个机器间的SSH是无密码登录的。
a. 在hadoop01上生成公钥
[root@hadoop01 hadoop]# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory '/root/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
6c:c6:80:64:00:ec:ab:b0:94:21:71:2e:a8:8b:c2:40 root@hadoop01
The key's randomart image is:
+--[ RSA 2048]----+
|o...o |
|...o . |
|o+ . . |
|+E. + |
|+.+ S |
|++ o |
|Bo |
|*. |
|. |
+-----------------+
一路回车,都设置为默认值,然后再当前用户的Home目录下的.ssh目录中会生成公钥文件(id_rsa.pub)和私钥文件(id_rsa)。
b. 分发公钥
[root@hadoop01 hadoop]# yum install -y openssh-clients
[root@hadoop01 hadoop]# ssh-copy-id hadoop01
The authenticity of host 'hadoop01 (192.168.216.135)' can't be established.
RSA key fingerprint is bd:5c:85:99:82:b4:b9:9d:92:fa:35:48:63:e1:5c:ce.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hadoop01,192.168.216.135' (RSA) to the list of known hosts.
root@hadoop01's password:
Now try logging into the machine, with "ssh 'hadoop01'", and check in:
.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expecting.
[root@hadoop01 hadoop]# ssh-copy-id hadoop02
[root@hadoop01 hadoop]# ssh-copy-id hadoop03
同样的在hadoop02、hadoop03上生成公钥和私钥后,将公钥分发到三台机器上。
分发Hadoop文件
1,首先在其他两台机器上创建存放Hadoop的目录
[root@hadoop02 ~]# mkdir -p /opt/modules/app
[root@hadoop03 ~]# mkdir -p /opt/modules/app
2,通过Scp分发
Hadoop根目录下的share/doc目录是存放的hadoop的文档,文件相当大,建议在分发之前将这个目录删除掉,可以节省硬盘空间并能提高分发的速度。
[root@hadoop01 hadoop]# du -sh /opt/modules/app/hadoop/share/doc
[root@hadoop01 hadoop]# rm -rf /opt/modules/app/hadoop/share/doc/
[root@hadoop01 hadoop]# scp -r /opt/modules/app/hadoop/ hadoop02:/opt/modules/app
[root@hadoop01 hadoop]# scp -r /opt/modules/app/hadoop/ hadoop03:/opt/modules/app
3,格式NameNode
在NameNode机器上执行格式化:
[root@hadoop01 hadoop]# /opt/modules/app/hadoop/bin/hdfs namenode -format
如果需要重新格式化NameNode,需要先将原来NameNode和DataNode下的文件全部删除,不然会报错,NameNode和DataNode所在目录是在core-site.xml中hadoop.tmp.dir、dfs.namenode.name.dir、dfs.datanode.data.dir属性配置的。
因为每次格式化,默认是创建一个集群ID,并写入NameNode和DataNode的VERSION文件中(VERSION文件所在目录为dfs/name/current 和 dfs/data/current),重新格式化时,默认会生成一个新的集群ID,如果不删除原来的目录,会导致namenode中的VERSION文件中是新的集群ID,而DataNode中是旧的集群ID,不一致时会报错。
另一种方法是格式化时指定集群ID参数,指定为旧的集群ID。
启动集群
[root@hadoop01 sbin]# /opt/modules/app/hadoop/sbin/start-dfs.sh
18/09/11 07:07:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Starting namenodes on [hadoop01]
hadoop01: starting namenode, logging to /opt/modules/app/hadoop/logs/hadoop-root-namenode-hadoop01.out
hadoop03: starting datanode, logging to /opt/modules/app/hadoop/logs/hadoop-root-datanode-hadoop03.out
hadoop02: starting datanode, logging to /opt/modules/app/hadoop/logs/hadoop-root-datanode-hadoop02.out
hadoop01: starting datanode, logging to /opt/modules/app/hadoop/logs/hadoop-root-datanode-hadoop01.out
Starting secondary namenodes [hadoop03]
hadoop03: starting secondarynamenode, logging to /opt/modules/app/hadoop/logs/hadoop-root-secondarynamenode-hadoop03.out
18/09/11 07:07:21 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[root@hadoop01 sbin]#
[root@hadoop01 sbin]# jps
3185 Jps
2849 NameNode
2974 DataNode
[root@hadoop02 ~]# jps
2305 Jps
2227 DataNode
[root@hadoop03 ~]# jps
2390 Jps
2312 SecondaryNameNode
2217 DataNode
启动yarn
[root@hadoop01 sbin]# /opt/modules/app/hadoop/sbin/start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /opt/modules/app/hadoop/logs/yarn-root-resourcemanager-hadoop01.out
hadoop02: starting nodemanager, logging to /opt/modules/app/hadoop/logs/yarn-root-nodemanager-hadoop02.out
hadoop03: starting nodemanager, logging to /opt/modules/app/hadoop/logs/yarn-root-nodemanager-hadoop03.out
hadoop01: starting nodemanager, logging to /opt/modules/app/hadoop/logs/yarn-root-nodemanager-hadoop01.out
[root@hadoop01 sbin]# jps
3473 Jps
3329 NodeManager
2849 NameNode
2974 DataNode
[root@hadoop01 sbin]#
[root@hadoop02 ~]# jps
2337 NodeManager
2227 DataNode
2456 Jps
[root@hadoop02 ~]#
[root@hadoop03 ~]# jps
2547 Jps
2312 SecondaryNameNode
2217 DataNode
2428 NodeManager
[root@hadoop03 ~]#
在hadoop02上启动ResourceManager:
[root@hadoop02 ~]# /opt/modules/app/hadoop/sbin/yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /opt/modules/app/hadoop/logs/yarn-root-resourcemanager-hadoop02.out
[root@hadoop02 ~]# jps
2337 NodeManager
2227 DataNode
2708 Jps
2484 ResourceManager
[root@hadoop02 ~]#
启动日志服务器
因为我们规划的是在hadoop03服务器上运行MapReduce日志服务,所以要在hadoop03上启动。
[root@hadoop03 ~]# /opt/modules/app/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /opt/modules/app/hadoop/logs/mapred-root-historyserver-hadoop03.out
[root@hadoop03 ~]# jps
2312 SecondaryNameNode
2217 DataNode
2602 JobHistoryServer
2428 NodeManager
2639 Jps
[root@hadoop03 ~]#
配置windows里面的host
查看HDFS Web页面
hadoop01:50070
查看YARN Web 页面
hadoop02:8088
测试Job
我们这里用hadoop自带的wordcount例子来在本地模式下测试跑mapreduce。
1、 准备mapreduce输入文件wc.input
[hadoop@bigdata-senior01 modules]$ cat /opt/data/wc.input
hadoop mapreduce hive
hbase spark storm
sqoop hadoop hive
spark hadoop
2、 在HDFS创建输入目录input
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -mkdir /input
3、 将wc.input上传到HDFS
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -put /opt/data/wc.input /input/wc.input
4、 运行hadoop自带的mapreduce Demo
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /input/wc.input /output
5、 查看输出文件
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -ls /output
Found 2 items
-rw-r--r-- 3 hadoop supergroup 0 2016-07-14 16:36 /output/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 60 2016-07-14 16:36 /output/part-r-00000