GO富集分析\KEGG

##Time:2017-10-8

##Author:Feng Shengyu

#----------------------------------------------------

#一、安装必须的R包(推荐使用的R版本3.2.2)

#必须要安装的包:

#  1、clusterprofilter

#  source("http://bioconductor.org/biocLite.R")

#  biocLite("clusterprofilter")

#  2、org.Mm.eg.db/org.Hs.eg.db(对应需要研究的物种-小鼠/人)

#  biocLite("org.Mm.eg.db")/biocLite("org.Hs.eg.db")

#  3、DOSE

#  biocLite(DOSE)

library(clusterProfiler)

library(DOSE)

library(org.Mm.eg.db)

#二 change the type of gene

#使用的上游数据是RNA-seq做完的差异表达的基因列表

#example:

# 15431

# 244091

# 15430

# 319158

# 13871

# 109663

# 735269

# 378431

# 21384

# 105247262

#读取gene list

gene <- read.table("C:\\Users\\Feng\\Desktop\\up_regulate_symbolGene.txt")

geneSymbol <- gene[,1]

geneSymbol

#转化基因类型,一般用cufflinks做的结果是symbol,此时需要转化为entrzid

geneEntrezID <- bitr(geneSymbol, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")

#可以同时转为多个类型的基因

#geneEntrezID <- bitr(geneSymbol, fromType="SYMBOL", toType=c("ENTREZID","UNIPROT"), OrgDb="org.Mm.eg.db",)

#三、enrichment analysis

#GO富集分析

ego_cc <- enrichGO(gene = geneEntrezID[,2], #使用entrezID作为输入

OrgDb=org.Mm.eg.db,

ont = "CC",

pAdjustMethod = "BH",

minGSSize = 1,

pvalueCutoff = 0.05,

qvalueCutoff = 0.05,

readable = TRUE

)

setwd("F:\\生信工具大全\\R")

write.table(as.data.frame(ego_cc@result),file="test_CC.txt",sep="\t")

#KEGG富集分析

kk <- enrichKEGG(gene = geneEntrezID[,2],

organism ="mouse",

pvalueCutoff = 0.05,

qvalueCutoff = 0.01,

minGSSize = 1,

use_internal_data =FALSE

)

write.table(as.data.frame(kk@result), file="test_kk.txt",sep="\t")

#作图展示结果

barplot(ego_cc, showCategory=15, title="EnrichmentGO_CC") #条状图,按p从小到大排的

dotplot(ego_BP,title="EnrichmentGO_CC_dot") #点图,按富集的数从大到小的

#--------------------核心代码-----------------------

setwd("F:\\硕士生\\GO和KEGG富集分析")

library(clusterProfiler)

library(DOSE)

library(org.Mm.eg.db)

gene <- read.table("C:\\Users\\Feng\\Desktop\\up_regulate.gene")

geneSymbol <- gene[,1]

geneEntrezID <- bitr(geneSymbol, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Mm.eg.db")

ego_cc <- enrichGO(gene = geneEntrezID[,2], #使用entrezID作为输入

OrgDb=org.Mm.eg.db,

ont = "CC",

pAdjustMethod = "BH",

minGSSize = 1,

pvalueCutoff = 0.01,

qvalueCutoff = 0.01,

readable = TRUE

)

write.table(as.data.frame(ego_cc@result),file="haimati_M_up_enrich_GO.txt",sep="\t")

barplot(ego_cc, showCategory=15, title="GO_Enrichment") #条状图,按p从小到大排的

ego_BP <- enrichKEGG(gene = geneEntrezID[,2],

organism ="mouse",  #http://www.genome.jp/kegg/catalog/org_list.html(species names)

pvalueCutoff = 0.05,

qvalueCutoff = 0.01,

minGSSize = 1,

use_internal_data =FALSE

)

write.table(as.data.frame(ego_BP@result), file="haimati_M_up_enrich_KEGG.txt",sep="\t")

dotplot(ego_BP,title="EnrichmentGO_CC_dot") #点图,按富集的数从大到小的

你可能感兴趣的:(GO富集分析\KEGG)