亚像素级角点检测

  亚像素在提高检测精度上有着很大的作用,在实际的情况下,检测到的角点不会是一个准确的像素点,精确来说是一个浮点数角点,这样可以保证后面的三维重建及相机跟踪才能够更加精确。亚像素检测是基于曲线拟合的方式采用高斯,多项式及椭圆曲面来进行亚像素定位。

  下图是亚像素的检测结果:

亚像素级角点检测_第1张图片

 

 

亚像素检测函数参数解释:
cornerSubPix(gray,corners,winSize,zeroZone,criteria); 
gray,输入的灰度图像;
corners,利用前面角点检测函数提供初始坐标及转化后精确的输出坐标;
winSize,搜索窗口的一般尺寸大小;
zeroZone,死区的一半尺寸,避免自相关矩阵出现可能的奇异值;
criteria,角点迭代终止条件,迭代数目或设定的精度。
#include
#include

using namespace std;
using namespace cv;
int init_value=50, max_value=555;
Mat src,gray,dst;
void subpix(int, void*);
int main(int argc, char** argv)
{
    
    src = imread("H:/cv_code/image/home.jpg");
    if (src.empty())
    {
        printf("could not find image");
        return -1;
    }
    namedWindow("input");
    imshow("input",src);
    cvtColor(src,gray,COLOR_BGR2GRAY);
    namedWindow("result");
    createTrackbar("value:","result",&init_value,max_value, subpix);
    subpix(0,0);
    waitKey(0);
    return 0;
}



void subpix(int, void*)
{
    if (init_value <= 1)
        init_value = 1;
    vector corners;
    goodFeaturesToTrack(gray,corners,init_value,0.01,10,Mat(),3,false,0.04);
    dst = src.clone();
    int r = 4;
    for (int i = 0; i < corners.size(); i++)
    {
        circle(dst,corners[i],3,Scalar(0,0,255),-1,8,0);
    }
    imshow("result",dst);
    Size winSize = Size(5,5);
    Size zeroZone = Size(-1, -1);//此值代表没有死区
    TermCriteria criteria = TermCriteria(TermCriteria::EPS+ TermCriteria::MAX_ITER,40,0.001);
    cornerSubPix(gray,corners,winSize,zeroZone,criteria);
    for (int i = 0; i < corners.size(); i++)
    {
        cout << " \t>>精确角坐标[" << i << "](" << corners[i].x<<"," << corners[i].y<<")" << endl;
    }
}

 

你可能感兴趣的:(亚像素级角点检测)