唯一标示符符
NSUUID
系统并没有存储
NSString *uuid = [[NSUUID UUID] UUIDString];
NSLog(@"%@", uuid);
//-> C7933B11-B8EE-49A8-A628-C285AEBDBC24
广告标示符(IDFA-identifierForIdentifier)
广告标示符是由系统存储着的
NSString *adUDID = [[[ASIdentifierManager sharedManager] advertisingIdentifier] UUIDString];
NSLog(@"%@",adUDID);
//-> D3B19AFD-A6B6-4551-8CF0-1070A3D1F756
Vindor标示符 (IDFV-identifierForVendor)vendor
非常简单:一个Vendor是CFBundleIdentifier(反转DNS格式)的前两部分。例如,com.doubleencore.app1 和 com.doubleencore.app2 得到的identifierForVendor是相同的, 如果用户卸载了同一个vendor对应的所有程序,然后在重新安装同一个vendor提供的程序,此时identifierForVendor会被重置。
NSString *idfv = [[[UIDevice currentDevice] identifierForVendor] UUIDString];
NSLog(@"%@",idfv);
//-> B18BD9D8-D815-4774-813F-7135471BCFC7
iOS唯一标示符引导
Block
void (^ block)(void) = ^ {
printf("honzon");
};
block();
经过clang -rewrite-objc main.m
将main.m
转成main.cpp
文件
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
printf("honzon");
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
//声明
void (* block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
//执行
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
__main_block_impl
结构体 对应一个block的对象,包含一个block的所有信息
__main_block_func
函数实现 具体的block需要执行的代码
__main_block_desc
内存管理
__block_impl
函数管理
引用外部变量
int integer_2 = 2;
void (^block_2)(void) = ^ {
printf("integer %d", integer_2);
};
block_2();
struct __main_block_impl_1 {
struct __block_impl impl;
struct __main_block_desc_1* Desc;
int integer_2;
__main_block_impl_1(void *fp, struct __main_block_desc_1 *desc, int _integer_2, int flags=0) : integer_2(_integer_2) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_1(struct __main_block_impl_1 *__cself) {
int integer_2 = __cself->integer_2; // bound by copy
printf("integer %d", integer_2);
}
static struct __main_block_desc_1 {
size_t reserved;
size_t Block_size;
} __main_block_desc_1_DATA = { 0, sizeof(struct __main_block_impl_1)};
可以看到,引用外部变量的block
,最开始在__main_block_impl_1
中添加了一个成员变量integer_2
,然后在构造函数中对该变量进行赋值, 最后在__main_block_func_1
中取出该值使用。需要注意的是,在使用之前,进行了int integer_2 = __cself->integer_2;
操作,来创建一个临时变量以进行后续操作。因为是值传递,所以并不会改变外部变量。
使用__Block修饰的外部变量
__block int integer_3 = 3;
void (^block_3)(void) = ^ {
printf("integer %d", integer_3);
};
block_3();
struct __Block_byref_integer_3_0 {
void *__isa;
__Block_byref_integer_3_0 *__forwarding;
int __flags;
int __size;
int integer_3;
};
struct __main_block_impl_2 {
struct __block_impl impl;
struct __main_block_desc_2* Desc;
__Block_byref_integer_3_0 *integer_3; // by ref
__main_block_impl_2(void *fp, struct __main_block_desc_2 *desc, __Block_byref_integer_3_0 *_integer_3, int flags=0) : integer_3(_integer_3->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_2(struct __main_block_impl_2 *__cself) {
__Block_byref_integer_3_0 *integer_3 = __cself->integer_3; // bound by ref
printf("integer %d", (integer_3->__forwarding->integer_3));
}
static void __main_block_copy_2(struct __main_block_impl_2*dst, struct __main_block_impl_2*src) {_Block_object_assign((void*)&dst->integer_3, (void*)src->integer_3, 8/*BLOCK_FIELD_IS_BYREF*/);}
static void __main_block_dispose_2(struct __main_block_impl_2*src) {_Block_object_dispose((void*)src->integer_3, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __main_block_desc_2 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_2*, struct __main_block_impl_2*);
void (*dispose)(struct __main_block_impl_2*);
} __main_block_desc_2_DATA = { 0, sizeof(struct __main_block_impl_2), __main_block_copy_2, __main_block_dispose_2};
__attribute__((__blocks__(byref))) __Block_byref_integer_3_0 integer_3 = {(void*)0,(__Block_byref_integer_3_0 *)&integer_3, 0, sizeof(__Block_byref_integer_3_0), 3};
void (*block_3)(void) = ((void (*)())&__main_block_impl_2((void *)__main_block_func_2, &__main_block_desc_2_DATA, (__Block_byref_integer_3_0 *)&integer_3, 570425344));
((void (*)(__block_impl *))((__block_impl *)block_3)->FuncPtr)((__block_impl *)block_3);
大的改动相比不添加__block
修饰并不多,主要是增加一个新的结构体__Block_byref_integer_3_0
来保存变量的信息(主要是地址),然后声明block_3
的时候,将__block
修饰的变量的地址传进去,然后保存在__Block_byref_integer_3_0
中,最后在__main_block_func_2
中通过地址去操作变量。
如果截获的自动变量是OC的对象,在ARC下,将会强引用这个对象一次从而保证了原对象不被销毁,但与此同时,也会导致循环引用问题.
而根据isa指针,block一共有3种类型的
block_NSConcreteGlobalBlock
全局静态
_NSConcreteStackBlock
保存在栈中,出函数作用域就销毁
_NSConcreteMallocBlock
保存在堆中,retainCount == 0销毁
你真的理解__block修饰符的原理么?
Joshua Shen的回答