- 如何加快制造业数字化转型
九河智造云
制造云计算
加速制造业数字化转型的五大战略支点制造业数字化转型已进入深水区。工信部数据显示,2025年我国规模以上工业企业数字化研发工具普及率达88%,但全流程数字化覆盖率不足35%。破解转型困局需要构建“政策引导-技术突破-场景落地-生态协同”的加速机制,通过五大核心战略实现质效突破。一、强化顶层设计:构建转型制度保障体系政策创新需突破三大瓶颈:专项资金引导:设立2000亿元制造业数字化专项基金,对智能工厂
- Angular 动态加载组件与服务注入
t0_54program
编程问题解决手册angular.jsjavascriptecmascript个人开发
在Angular项目中,动态加载组件是一种常见的优化策略,特别是对于那些不常使用但体积庞大的组件。今天我们将探讨如何在Angular16+版本中使用MatDialog来动态加载组件,并解决与服务注入相关的问题。背景介绍假设我们有一个名为TestAComponent的组件,它需要在特定条件下打开一个对话框,显示一个名为TestBComponent的组件。由于TestBComponent非常大,并且使
- 微软Data Formulator:用AI重塑数据可视化的未来
几道之旅
人工智能智能体及数字员工人工智能信息可视化
在数据驱动的时代,如何快速将复杂数据转化为直观的图表是每个分析师面临的挑战。微软研究院推出的开源工具DataFormulator,通过结合AI与交互式界面,重新定义了数据可视化的工作流。本文将深入解析这一工具的核心功能、安装方法及使用技巧,助你轻松驾驭数据之美。一、DataFormulator是什么?DataFormulator是一款基于大语言模型(LLM)的AI工具,旨在帮助用户通过自然语言和界
- java面向对象基础
miehamiha
java开发语言
引入三大特征封装核心思想就是“隐藏细节”、“数据安全”,将对象不需要让外界访问的成员变量和方法私有化,只提供符合开发者意愿的公有方法来访问这些数据和逻辑,保证了数据的安全和程序的稳定。所有的内容对外部不可见。继承子类可以继承父类的属性和方法,并对其进行拓展。将其他的功能继承下来继续发展。多态同一种类型的对象执行同一个方法时可以表现出不同的行为特征。通过继承的上下转型、接口的回调以及方法的重写和重载
- 如何使用百度云Qianfan进行AI应用开发
dgay_hua
百度云人工智能云计算python
技术背景介绍百度云Qianfan是由百度公司提供的云服务,包含了云存储、文件管理、资源共享、以及第三方集成等功能。作为开发者,Qianfan支持多种AI应用开发组件,包括大语言模型(LLMs)、对话模型、嵌入模型和向量存储等。本文将重点介绍如何利用这些组件进行实际的AI应用开发。核心原理解析百度云Qianfan通过其丰富的API接口和云计算能力,为开发者提供了易于集成的AI开发环境。核心组件如Qi
- 免费GIS工具箱:支持多种格式的模型预览及编辑,还能进行协同编辑
GISBox
GISBoxGIS切片分发倾斜摄影OBJFBXOSGB
市面上不少GIS软件价格高昂,功能却不尽人意。但GISBox却不太一样,它的切片、分发功能完全免费,能预览、编辑多种格式模型,还支持协同编辑,性价比远超同类软件,如果你想进一步了解它,不妨看看这篇文章。01打破价格与功能的双重困境在地理信息系统(GIS)领域,大多数软件的高价一直是小型企业、科研团队以及个人开发者的一大阻碍。这些软件不仅采购成本高,后续的维护和升级费用也不低。与此同时,很多软件功能
- 【大语言模型_5】xinference部署embedding模型和rerank模型
没枕头我咋睡觉
大语言模型语言模型embedding人工智能
一、安装xinferencepipinstallxinference二、启动xinference./xinference-local--host=0.0.0.0--port=5544三、注册本地模型1、注册embedding模型curl-XPOST"http://localhost:5544/v1/models"\-H"Content-Type:application/json"\-d'{"mod
- 向量检索、检索增强生成(RAG)、大语言模型及相关系统架构——典型面试问题及简要答案
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)语言模型系统架构面试
1.什么是向量检索?它与传统基于关键字的检索相比有什么不同?答案要点:向量检索是将文本、图像、音频等数据映射为向量,在高维向量空间中基于相似度或距离进行搜索。与传统基于关键字的检索(如倒排索引)相比,向量检索更关注“语义”或“特征”,能找出语义上相似但未必包含相同关键词的内容。向量检索非常适合多模态场景(例如“以图搜图”)或自然语言问答(同义词、上下文关联等)。2.什么是检索增强生成(RAG)?核
- 使用LangSmith追踪LLM令牌使用情况的指南
dgay_hua
java服务器前端python
在将应用程序投入生产时,追踪令牌使用情况以计算成本是一个重要的步骤。本文将深入探讨如何从LangChain模型调用中获取这些信息。技术背景介绍在大语言模型(LLM)的应用中,令牌使用计数是估算模型调用成本的基础。LangSmith提供了一种有效的方式来帮助跟踪应用程序中的令牌使用。此外,使用回调机制可以在不同的API调用中进行监控,这对于复杂的应用程序尤其重要。核心原理解析通过在API调用中使用回
- 如何评估一个RAG系统(RAGas评测框架)-下篇
写程序的小火箭
大语言模型人工智能语言模型chatgptlangchaingpt
RAGas是一个用于评测RAG系统的评测框架,它支持与不同大语言模型的集成,并与langchain生态打通,能够很方便的构建评测系统。下面是RAGas的一些链接论文:https://arxiv.org/pdf/2309.15217官方文档:Ragashttps://github.com/explodinggradients/ragas官方文档及github对框架的使用介绍的比较详细,本文不会就该方
- 【AI大模型应用开发】【RAG评估】0. 综述:一文了解RAG评估方法、工具与指标
同学小张
大模型人工智能笔记经验分享gptagiAIGC
大家好,我是同学小张,日常分享AI知识和实战案例欢迎点赞+关注,持续学习,持续干货输出。+v:jasper_8017一起交流,一起进步。微信公众号也可搜【同学小张】本站文章一览:前面我们学习了RAG的基本框架并进行了实践,我们也知道使用它的目的是为了改善大模型在一些方面的不足:如训练数据不全、无垂直领域数据、容易出现幻觉等。那么如何评估RAG的效果呢?本文我们来了解一下。文章目录推荐前置阅读0.R
- 大模型最新面试题系列:微调篇之微调基础知识
人肉推土机
大模型最新面试题集锦大全面试人工智能AI编程大模型微调LLM
一、全参数微调(Full-Finetune)vs参数高效微调(PEFT)对比1.显存使用差异全参数微调:需存储所有参数的梯度(如GPT-3175B模型全量微调需约2.3TB显存)PEFT:以LoRA为例,仅需存储低秩矩阵参数(7B模型使用r=16的LoRA时显存占用减少98%)实战经验:在A10080GB显存下,全量微调LLaMA-7B需DeepSpeedZero3优化,而LoRA可直接单卡运行2
- 一步到位!7大模型部署框架深度测评:从理论到DeepSeek R1:7B落地实战
人肉推土机
人工智能python
本文在掘金同步发布:文章地址更多优质文章,请关注本人掘金账号:人肉推土机的掘金账号随着大语言模型(LLM)的广泛应用,如何高效部署和推理模型成为开发者关注的核心问题。本文深入解析主流模型部署框架(Transformers、ModelScope、vLLM、LMDeploy、Ollama、SGLang、DeepSpeed),结合其技术原理、优缺点及适用场景,并提供DeepSeekR1:7B的详细部署实
- 对MCP工作流的一些个人认知
持续学习的老赵
人工智能
最近在学习MCP系统,虽尚未深入掌握,但已对其工作原理有了初步认识,在此分享下学习收获。MCP是一套能实现客户端、多种服务与大模型协同工作的系统,能处理任务请求并及时反馈。其工作流程如下:一、获取并更新服务使用方法(一)收集整理使用方法MCP正常运行依赖于对各类服务使用方法的了解,这要靠已在系统注册且可识别的功能模块。一旦有新模块注册或旧模块更新,系统会自动检测并获取其使用方法信息。MCP订阅服务
- GEO:在AI时代抢占DeepSeekC位?
白雪讲堂
人工智能
前言:当SEO遇见AGI——一场静默的流量革命在生成式AI日均处理53亿次查询的今天,传统SEO的「关键词-排名-点击」逻辑正在崩塌。DeepSeek、ChatGPT、豆包等大模型用动态生成的答案,悄然截流了68%的搜索需求。更残酷的是:当用户问"某个产品推荐"时,AI可能同时调用37个信源,却不会留下任何可追踪的搜索痕迹。这场革命迫使企业必须从「关键词优化」转向「场景占领」,从「流量争夺」进化到
- 每日一题--内存池
秋凉 づᐇ
java开发语言
内存池(MemoryPool)是一种高效的内存管理技术,通过预先分配并自主管理内存块,减少频繁申请/释放内存的系统开销,提升程序性能。它是高性能编程(如游戏引擎、数据库、网络服务器)中的核心优化手段。内存池的核心原理预先分配:初始化时一次性申请一大块内存(称为“池”),避免程序运行时频繁调用malloc/new。自主管理:将大块内存划分为多个固定或可变大小的内存单元,由程序自行分配和回收。复用机制
- 《颠覆传统,用Web3.0技术手撸一个去中心化微博(含完整代码)》
煜bart
web3人工智能区块链
一、为什么你的下一个项目必须拥抱Web3.0?传统互联网正面临三大致命伤:-用户数据被巨头垄断(某浪删帖事件频发)-单点故障导致服务瘫痪(某云宕机损失过亿)-创作者收益被平台榨取(某音抽成高达70%)**Web3.0的破局方案:**-✅数据永久存储在IPFS/Arweave-✅智能合约自动分配收益-✅抗审查的链上内容存证---###二、核心技术栈揭秘(附对比图表)|技术|传统方案|Web3.0方案
- Java 基础数据类型
代码先锋者
java开发java开发语言
一、引言在Java中每个变量都必须先声明其数据类型,才能使用(即Java是强类型语言)。Java的数据类型分为两大类:基本数据类型(PrimitiveDataTypes)和引用数据类型(ReferenceDataTypes)。二、基本数据类型分类Java有8种基本数据类型(如下图所示),可分为四大类(整数型,浮点型,字符型和布尔型):8大基本数据类型具体位数、取值范围和默认值等如下表所示:数据类型
- MCP协议
zhurui_xiaozhuzaizai
入口集锦人工智能自然语言处理
1什么是MCP?MCP(ModelContextProtocol,模型上下文协议)是由Anthropic推出的一种开放标准,旨在统一大型语言模型(LLM)与外部数据源和工具之间的通信协议。MCP的主要目的在于解决当前AI模型因数据孤岛限制而无法充分发挥潜力的难题,MCP使得AI应用能够安全地访问和操作本地及远程数据,为AI应用提供了连接万物的接口。1.1MCP与functioncallMCP是在O
- 【大模型系列】SFT(Supervised Fine-Tuning,监督微调)
Kwan的解忧杂货铺@新空间代码工作室
s2AIGC大模型
欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:kwan的首页,持续学习,不断总结,共同进步,活到老学到老导航檀越剑指大厂系列:全面总结java核心技术,jvm,并发编程redis,kafka,Spring,微服务等常用开发工具系列:常用的开发工具,IDEA,Mac,Alfred,Git,
- 什么是设计模式以及常见的例子(如单例、工厂、观察者等)
python资深爱好者
c++设计模式单例模式
设计模式(DesignPattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式的主要目的是为了可重用代码、让代码更容易被他人理解、提高代码的可靠性。设计模式一般包含模式名称、问题、目的、解决方案、效果等基本要素。设计模式根据目的(即模式是用来做什么的)可以分为三大类:创建型模式、结构型模式和行为型模式。下面分别给出几个常见的设计模式例子,包括单例模式、工厂模
- Open WebUI – 本地化部署大模型仿照 ChatGPT用户界面
m0_74824845
chatgptui
OpenWebUI介绍:OpenWebUI是一个仿照ChatGPT界面,为本地大语言模型提供图形化界面的开源项目,可以非常方便的调试、调用本地模型。你能用它连接你在本地的大语言模型(包括Ollama和OpenAI兼容的API),也支持远程服务器。Docker部署简单,功能非常丰富,包括代码高亮、数学公式、网页浏览、预设提示词、本地RAG集成、对话标记、下载模型、聊天记录、语音支持等。官网地址:ht
- 微信小程序中使用wx.getLocation获取实时经纬度,并使用经纬度获取当前定位信息
學习?學个屁
微信小程序小程序前端javascript
需在微信公众平台申请wx.getLocation接口,否则上线不可使用,申请需将图片/录屏资料准备齐全,需有配送/打车类的含地图实时绘制路线的功能通过率才大,其他简单文字展示信息不易通过。官方文档:位置/wx.getLocation;需在app.json文件内进行声明:"requiredPrivateInfos":["getLocation","chooseLocation","chooseAdd
- 视频剪辑行业的现状与进阶之路:一个双视角分析
程序员
视频剪辑行业的现状与进阶之路:一个双视角分析一、现状解析商业角度分析成本控制培训需要投入时间和人力成本快节奏的市场环境要求快速产出人员流动性大,培训投入可能无法获得长期回报市场需求大量内容需要快速产出标准化的剪辑模板更容易管理追求效率大于创新风险规避现成模板降低出错风险统一风格便于品控减少个人风格带来的不确定性剪辑师角度分析职业发展受限难以系统学习完整工作流程创意空间被压缩技能提升遇到瓶颈技能断层
- 使用DeepEval进行LLM的单元测试
VYSAHF
单元测试log4jpython
在构建大语言模型(LLM)时,测试是确保模型行为和性能的关键步骤。ConfidentAI推出的DeepEval提供了一套完整的工具包,帮助开发者进行LLM的单元测试和集成测试。结合这些功能,你可以快速迭代,创建更健壮的语言模型。技术背景介绍DeepEval是ConfidentAI开发的一个包,用于语言模型的单元测试和集成测试。它的目标是让开发者能够通过合成数据创建、测试和优化模型,从而实现更高效的
- 腾讯云大模型知识引擎与DeepSeek:打造懒人专属的谷歌浏览器翻译插件
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3腾讯云云计算
摘要:随着人工智能技术的飞速发展,越来越多的前沿技术和工具已走入日常生活。翻译工具作为跨语言沟通的桥梁,一直处于技术创新的风口浪尖。本文探讨了腾讯云大模型知识引擎与DeepSeek结合谷歌浏览器插件的可能性,旨在为用户提供一种便捷、高效的翻译体验。通过应用深度学习、自然语言处理和知识图谱技术,该插件不仅能实时翻译网页内容,还能根据上下文进行智能推荐,实现精准的语境转换。本文将详细阐述其设计思路、技
- Netty源码—2.Reactor线程模型二
东阳马生架构
Netty应用与源码NettyReactor线程模型
大纲1.关于NioEventLoop的问题整理2.理解Reactor线程模型主要分三部分3.NioEventLoop的创建4.NioEventLoop的启动4.NioEventLoop的启动(1)启动NioEventLoop的两大入口(2)判断当前线程是否是NioEventLoop线程(3)创建一个线程并启动(4)NioEventLoop的启动总结(1)启动NioEventLoop的两大入口入口一
- DeepSeek-R1大模型微调技术深度解析:架构、方法与应用全解析
大势下的牛马
搭建本地gpt架构deepseek微调
1.DeepSeek-R1大模型架构设计与技术特性1.1架构设计DeepSeek-R1作为超大规模语言模型,其核心架构设计包含以下创新:专家混合架构(MoE)采用6710亿参数的混合专家架构(MoE),每个推理过程仅激活370亿参数,实现计算效率与资源利用率的突破性提升。Transformer框架增强基于改进型Transformer架构,结合多头注意力机制(MLA)与动态权重分配技术,优化了长程依
- AI学习教程DeepSeek使用教程合集 免费下载
oneboxai
学习
1.DeepSeek本地部署2.Deepseek搭建个人知识库3.DeepSeek提示词详解4.Deepseek使用技巧大全5.DeepSeek提示词大全6.DeepSeek保姆级新手教程7.DeepSeek各类应用8.Deepseek写小说9.DeepSeekV3部署教程10.DeepseekwordExcel11.Deepseek科研论文12.Deepseek开发游戏13.大模型通用一-A1指
- 技术革命、需求升级与商业生态迭代——基于开源AI大模型与智能商业范式的创新研究
说私域
人工智能开源小程序微信零售
摘要:本文以技术哲学与商业生态系统理论为分析框架,通过质性研究与案例分析法,系统阐释第三次与第四次科技革命如何通过技术范式创新引发用户需求跃迁,进而驱动商业生态系统的结构性变革。研究聚焦开源AI大模型、AI智能名片、S2B2C商城及小程序源码等前沿技术工具,解构其如何重构"技术赋权-需求进化-商业物种爆发"的价值传导链条。研究发现:技术革命通过创造新需求空间、重构价值网络拓扑结构、降低创新参与门槛
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文