Python的多重继承问题-MRO和C3算法

关于MRO 和 C3算法

有一个sina的blog介绍的很好:python多重继承MRO

mro即method resolution order,主要用于在多继承时判断调的属性的路径(来自于哪个类)。之前查看了很多资料,说mro是基于深度优先搜索算法的。但不完全正确在Python2.3之前是基于此算法,但从Python2.3起应用了新算法:C3算法。

为什么采用C3算法

C3算法最早被提出是用于Lisp的,应用在Python中是为了解决原来基于深度优先搜索算法不满足本地优先级,和单调性的问题。
本地优先级:指声明时父类的顺序,比如C(A,B),如果访问C类对象属性时,应该根据声明顺序,优先查找A类,然后再查找B类。
单调性:如果在C的解析顺序中,A排在B的前面,那么在C的所有子类里,也必须满足这个顺序。
在Python官网的The Python 2.3 Method Resolution Order中作者举了例子,说明这一情况。

F=type('Food', (), {remember2buy:'spam'})
E=type('Eggs', (F,), {remember2buy:'eggs'})
G=type('GoodFood', (F,E), {})

根据本地优先级在调用G类对象属性时应该优先查找F类,而在Python2.3之前的算法给出的顺序是G E F O,而在心得C3算法中通过阻止类层次不清晰的声明来解决这一问题,以上声明在C3算法中就是非法的。

C3算法

判断mro要先确定一个线性序列,然后查找路径由由序列中类的顺序决定。所以C3算法就是生成一个线性序列。
如果继承至一个基类:

class B(A)

这时B的mro序列为[B,A]

如果继承至多个基类

class B(A1,A2,A3 ...)

这时B的mro序列

mro(B) = [B] + merge(mro(A1), mro(A2), mro(A3) ..., [A1,A2,A3])
merge操作就是C3算法的核心。

遍历执行merge操作的序列,如果一个序列的第一个元素,在其他序列中也是第一个元素,或不在其他序列出现,则从所有执行merge操作序列中删除这个元素,合并到当前的mro中。

merge操作后的序列,继续执行merge操作,直到merge操作的序列为空。
如果merge操作的序列无法为空,则说明不合法。

例子:

class A(O):pass
class B(O):pass
class C(O):pass
class E(A,B):pass
class F(B,C):pass
class G(E,F):pass

A、B、C都继承至一个基类,所以mro序列依次为[A,O]、[B,O]、[C,O]

mro(E) = [E] + merge(mro(A), mro(B), [A,B])
       = [E] + merge([A,O], [B,O], [A,B])

执行merge操作的序列为[A,O]、[B,O]、[A,B]
A是序列[A,O]中的第一个元素,在序列[B,O]中不出现,在序列[A,B]中也是第一个元素,所以从执行merge操作的序列([A,O]、[B,O]、[A,B])中删除A,合并到当前mro,[E]中。

mro(E) = [E,A] + merge([O], [B,O], [B])

再执行merge操作,O是序列[O]中的第一个元素,但O在序列[B,O]中出现并且不是其中第一个元素。继续查看[B,O]的第一个元素B,B满足条件,所以从执行merge操作的序列中删除B,合并到[E, A]中。

mro(E) = [E,A,B] + merge([O], [O])
       = [E,A,B,O]

同理

mro(F) = [F] + merge(mro(B), mro(C), [B,C])
           = [F] + merge([B,O], [C,O], [B,C])
           = [F,B] + merge([O], [C,O], [C])
           = [F,B,C] + merge([O], [O])
           = [F,B,C,O]

mro(G) = [G] + merge(mro[E], mro[F], [E,F])
           = [G] + merge([E,A,B,O], [F,B,C,O], [E,F])
           = [G,E] + merge([A,B,O], [F,B,C,O], [F])
           = [G,E,A] + merge([B,O], [F,B,C,O], [F])
           = [G,E,A,F] + merge([B,O], [B,C,O])
           = [G,E,A,F,B] + merge([O], [C,O])
           = [G,E,A,F,B,C] + merge([O], [O])
           = [G,E,A,F,B,C,O]

自己实现了一个mro算法:

from exceptions import Exception

def c3_lineration(kls):
    if len(kls.__bases__) == 1:
        return [kls, kls.__base__]
    else:
        l = [c3_lineration(base) for base in kls.__bases__]
        l.append([base for base in kls.__bases__])
        return [kls] + merge(l)

def merge(args):
    if args:
        for mro_list in args:
            for class_type in mro_list:
                for comp_list in args:
                    if class_type in comp_list[1:]:
                        break
                else:
                    next_merge_list = []
                    for arg in args:
                        if class_type in arg:
                            arg.remove(class_type)
                            if arg:
                                next_merge_list.append(arg)
                        else:
                            next_merge_list.append(arg)
                    return [class_type] + merge(next_merge_list)
        else:
            raise Exception
    else:
        return []



class A(object):pass
class B(object):pass
class C(object):pass
class E(A,B):pass
class F(B,C):pass
class G(E,F):pass

print c3_lineration(G)

当前,我在Python3.6下,如果想要查看继承顺序的话,更简单,每个类都有一个.mro()的方法。

你可能感兴趣的:(Python的多重继承问题-MRO和C3算法)