- python 语音识别
柚梓sir
神经网络语音识别人工智能
在python中训练一个语音识别系统主要需要以下几个步骤:-语料库准备-数据预处理-特征提取-训练模型第一部分:语料库的准备什么是语料库?语料库长什么样?语料库由两部分组成,第一部分是语音,第二部分是玉莹的标注,通常为字符形式。本次项目中,我们选用的语料库是THCHS-30,这个语料库是在安静的办公室环境下,由录音人员用普通话朗读新闻的语音作为数据,总时长超过30个小时。我们利用语料库,构造转换字
- c++基础训练plus(二)
kkxdt
c++开发语言
Background从前有个荣光的王国,小A是其中的国王,他认为一个国家除了法律外还要有一些约定俗成的规则,所以今天他要赐以其规则。Description小A制定了一些规则,每条规则有一个代号,代号为不超过10的9次方的非负整数。小A的国家有n位居民,每位居民每天会且仅会遵守1条规则。小A记录了m天里每天每位居民遵守的规则代号。现在小A想要考察代号为k的规则是否符合民意,具体考察方法如下:如果在某
- 代码随想录算法训练营第三十七天-动态规划-完全背包-理论基础
taoyong001
算法动态规划c++leetcode
完全背包与01背包根本区别就是物品的数量完全背包,物品的数量是无限的,可以任意取多个01背包物品的数量则只有一个遍历顺序01背包的一维滚动数组必须要从后向前遍历,这是防止一个物品被多次加入背包中而完全背包就是要多次加入物品,所以遍历自然而然就变成正序遍历了for(intj=weight[i];j<=capacityOfCurrentBag;++j)因为是二层遍历,且这两层遍历可以交换可以交换的本质
- xgboost在spark集群使用指南
一颗小草333
算法mapreducespark数据挖掘
简介XGBoost是一个优化的分布式梯度增强库,具有高效、灵活和可移植性。在梯度增强框架下实现了机器学习算法。XGBoost提供了一种并行树增强(也称为GBDT、GBM),可以快速、准确地解决许多数据科学问题。相同的代码在主要的分布式环境(Hadoop、SGE、MPI)上运行,可以解决数十亿个示例的训练问题。xgb相对于gbt所做的改进:1.2.3.XGBoost可以使用R、python、java
- 代码随想录算法训练营第三十六天-动态规划-474.一和零
taoyong001
算法动态规划c++leetcode
背包问题本身就已经够反思维的了,竟然物品会有两个维度的情况,这是闹哪样?题目要求是最大子集的个数题目中的mmm和nnn可以类比为容器,要装潢这个容器,最多要多少个元素的个数,就是结果,这个容器最多有mmm个0,nnn个1这个容器相当于一个背包,这个背包是有两个维度,最多有mmm个0,nnn个1,装潢这个背包最多需要多少个物品给出的数据集就是物品这是一道01背包问题动规五部曲这里要使用一个二维的动规
- 目标检测算法以及常用库概述
YOLO大师
目标检测算法人工智能
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例目标检测是在图像中发现并识别物体的过程,它是深度学习和图像处理领域的重要成果之一。在创建物体定位时,识别物体时,常见的一种方法是使用边界框。这种方法具有很高的通用,可以训练目标检测模型来识别和检测多个特
- 飞速搭震撼上线 开启软件开发智能化新篇章
低代码
近日,飞速低代码开发平台迎来了一项具有里程碑意义的重大更新——“飞速搭”正式上线。飞速搭通过深度融合前沿的人工智能技术,实现了从需求文档到应用发布的无缝衔接,一键智能生成应用,为软件开发领域带来了全新的突破和变革。“飞速搭”的实现路径高效而清晰。用户只需将需求文档或需求描述输入给预训练的大模型,这一步骤极大地简化了传统软件开发中繁琐的需求分析和文档编写过程,使用户能够更专注于核心需求的表达。大模型
- 代码随想录算法训练营第七天 | LeetCode344.反转字符串、LeetCode541.反转字符串II、卡码网54.替换数字
ORIPID
算法
代码随想录算法训练营第七天|LeetCode344.反转字符串、LeetCode541.反转字符串II、卡码网54.替换数字01-1LeetCode344.反转字符串相关资源题目链接:反转字符串文章讲解:反转字符串视频讲解:反转字符串题目:编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组s的形式给出。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用O(1)的额外空间解
- 蓝桥刷题 基础训练python
小馨不滑水
笔记python蓝桥杯算法
""""数列排序问题描述给定一个长度为n的数列,将这个数列按从小到大的顺序排列。1<=n<=200输入格式第一行为一个整数n。第二行包含n个整数,为待排序的数,每个整数的绝对值小于10000。输出格式输出一行,按从小到大的顺序输出排序后的数列。"""#ls=[]#a=int(input())#b=input().split()#foriinb:#ls.append(int(i))#ls.sort(
- # AI绘图中的Embedding、CLIP、Flux中的Clip与LCM SDXL加速生成解析
迪小莫学AI
人工智能embedding
AI绘图中的Embedding、CLIP、Flux中的Clip与LCMSDXL加速生成解析在现代AI绘图和深度学习中,涉及了多个复杂的概念和技术,这些技术在图像生成、训练加速以及多模态学习等方面起着至关重要的作用。在这篇博客中,我们将讨论几个关键概念:Embedding、CLIP模型、Flux中的Clip,以及LCMSDXL加速生成技术的实现原理。1.AI绘图中的Embedding是什么意思?在A
- AI学习指南Ollama篇-Ollama简介
俞兆鹏
AI学习指南人工智能ollama
一、定义大语言模型(LLM)是一种基于深度学习的自然语言处理模型,能够生成文本、回答问题、翻译语言、撰写代码等。这些模型通过海量的文本数据进行训练,学习语言的模式和结构,从而能够生成自然流畅的文本内容。随着技术的不断进步,大语言模型在各个领域都展现出了巨大的潜力。二、应用场景大语言模型的应用场景非常广泛,以下是一些常见的例子:聊天机器人:通过自然语言理解与生成,为用户提供智能对话服务。内容创作:帮
- Direct Preference Optimization (DPO): 一种无需强化学习的语言模型偏好优化方法
Yuleave
论文学习语言模型人工智能自然语言处理
论文地址:https://arxiv.org/pdf/2305.182901.背景与挑战近年来,大规模无监督语言模型(LM)在知识获取和推理能力方面取得了显著进展,但如何精确控制其行为仍是一个难题。现有的方法通常通过**强化学习从人类反馈(RLHF)**来引导模型行为,但RLHF存在以下问题:复杂性高:RLHF需要先训练一个奖励模型来反映人类偏好,然后使用强化学习来微调语言模型,使其在最大化奖励的
- 推荐洛谷网站:全面解析与实用指南
w(゚Д゚)w吓洗宝宝了
c++c语言javac#python
洛谷(Luogu)是中国领先的在线编程学习和竞赛平台,自成立以来,已经成为许多编程爱好者的首选平台。洛谷不仅提供了丰富的编程题目和资源,还支持多种编程语言,并且拥有活跃的社区氛围。本文将详细介绍洛谷的核心功能、使用技巧以及推荐理由,帮助你更好地利用洛谷进行编程学习和竞赛训练。一、洛谷的核心功能1.题库与练习洛谷拥有庞大的题库,涵盖了从入门到高级的各种难度级别的题目。这些题目不仅覆盖了基础算法,还包
- 【代码复现】ResUNet++进行语义分割(含图像切片预处理)
Cpdr
模型代码解读深度学习人工智能
文章目录参考资料1.preprocess.py1.1.参数声明1.1.1.执行命令的形参1.1.2.代码中的参数声明2.train.py2.1.参数声明2.2.main函数(不包括训练阶段)2.2.1参数说明2.2.2.读取数据部分2.2.3.创建loaders2.3.训练阶段2.4.validation阶段3.其他相关代码3.1.model.py3.1.1.res_unet_plus.py3.1
- Python支持向量机(SVM)算法:面向对象的实现与案例详解
闲人编程
进阶算法案例支持向量机算法python深度学习数据分析
目录Python支持向量机(SVM)算法:面向对象的实现与案例详解引言一、支持向量机算法概述1.1支持向量机的基本思想1.2SVM的分类问题1.3SVM的优化目标二、面向对象的SVM实现2.1类的设计2.2Python代码实现2.3代码详解三、案例分析3.1案例一:鸢尾花分类问题描述数据准备模型训练与预测输出结果3.2案例二:手写数字识别问题描述数据准备模型训练与预测输出结果四、SVM的优化与核方
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 躺着敲代码第二天-----聊聊Spring的AOP(面向切面编程)
想躺着敲代码^^
springjava
AOP(Aspectorientedprogramming)什么是AOPAOP(AspectOrientedProgramming)即面向切面编程,AOP是OOP(面向对象编程)的一种延续,二者互补,并不对立。AOP的目的是将横切关注点(如日志记录、事务管理、权限控制、接口限流、接口幂等等)从核心业务逻辑中分离出来,通过动态代理、字节码操作等技术,实现代码的复用和解耦,提高代码的可维护性和可扩展性
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 《从传统到智能:大模型交换机的变革之路》
烁月_o9
数据库服务器运维web安全安全
大模型交换机是一种专门为大规模人工智能模型提供网络和计算资源调度的硬件设备。以下是关于它的详细介绍:特点高带宽和低延迟:大模型的训练和推理通常需要处理大量的数据,高带宽可以确保数据在各个计算节点之间快速传输,低延迟则能减少数据传输过程中可能出现的瓶颈,提高训练和推理的效率。智能路由与数据调度:基于AI算法的调度机制,能够动态地调整数据传输路径,以应对不同网络条件和负载的变化,避免某些节点的拥塞,确
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 6 回归集成:xgb、lgb、cat
汀沿河
#2比赛常用的代码回归数据挖掘人工智能
这个代码是从kaggle上拷贝过来的:如何使用三个树模型模块化训练;文本特征如何做,如何挖掘;时间特征的处理;模型权重集成;importpandasaspdimportmathimportnumpyasnpimportjoblibimportoptunafromlightgbmimportLGBMRegressorfromcatboostimportCatBoostRegressorfromxgb
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 龙珠训练营机器学习task04
a_little_pig_
python
学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:https://tianchi.aliyun.com/competition/entrance/231702/introduction?spm=5176.20222472.J_3678908510.8.8f5e67c2RKrT98总体思路:分别使用LightGBM,xgboost,gbdt,catboost建立多个个体学习器(加入b
- 蓝桥杯嵌入式历年省赛真题
计算机小混子
单片机蓝桥杯职场和发展
蓝桥杯嵌入式历年省赛真题目前是第六到十二届真题,还剩第十三和第十四届的题目,由于最近一下做了很多套,最后两套等考前复习时做很多套路是固定,使用STM32G431开发板蓝桥杯嵌入式第六届真题—电压测量监控系统蓝桥杯嵌入式第七届真题–模拟液位检测告警系统蓝桥杯嵌入式第八届真题–模拟升降控制器蓝桥杯嵌入式第九届真题–电子定时器蓝桥杯嵌入式第十届真题–电压检测系统蓝桥杯嵌入式第十一届真题蓝桥杯嵌入式第十二
- 【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
半截诗
Pythonpython机器学习scikit-learn人工智能深度学习数据分析随机森林
文章目录从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用前言第一部分:深入了解Scikit-Learn的基础知识1.什么是Scikit-Learn?2.安装Scikit-Learn3.Scikit-Learn中的基本构件4.数据集的加载与探索5.数据预处理标准化数据6.构建和训练机器学习模型构建逻辑回归模型7.模型评估与验证混淆矩阵第二部分:深入理解Scikit-Learn的高级
- Progressive learning
yore0531
深度学习人工智能计算机视觉
learnfromRestormer.Restormer:EfficientTransformerforHigh-ResolutionImageRestoration|IEEEConferencePublication|IEEEXploreProgressivelearning在小的croppatches上训练Transformer模型可能无法对全局图像统计进行编码,从而在测试时对全分辨率图像的效
- 【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPC Loss)如何计算?以及Wasserstein距离和CPC Loss结合的对抗训练示例,附代码(二)
努力学习的大大
深度学习基础深度学习迁移学习人工智能python
【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)文章目录【深度学习|迁移学习】Wassers
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本