Tensorflow 1.0 实现word2vec之skip-gram

完整代码

Word2Vec核心观念

  • 相似的词具有相似的上下文
  • cat climbed a tree and kitten climbed a tree
  • 则数据为 (input:cat,output:tree) and (input:kitten,output:tree),
  • So cat and kitty的向量表示会很接近

skip-gram 简介

  • word 预测 context(word)
  • The dog barked at the mailman
  • 当skip_window=2,dog 预测(the barked at)
  • 数据输入为 (input:dog,output:the)(input:dog,output:barked)(input:dog,output:at)

说明

  • 对text8进行word2vec
  • 对词向量降为可视化

代码解释

  • 首先下载并验证text8数据集
  • 读取数据集,转化为列表vocabulary(每个元素为单词)
  • 根据vocabulary建立data, count, dictionary, reverse_dictionary
  • 按照skip-gram要求生成batch train data
  • 建立模型并训练(每disp_step输出一些相近的词向量)
  • stne降维并可视化

首先下载并验证text8数据集

import collections
import math
import os
import random
import zipfile

import numpy as np
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

print(tf.__version__)
# Step 1: Download the data.
url = 'http://mattmahoney.net/dc/'

def maybe_download(filename, expected_bytes):
  """
  Download a file if not present, 
  and make sure it's the right size.
  """
  if not os.path.exists(filename):
    filename, _ = urllib.request.urlretrieve(url + filename, filename)
  statinfo = os.stat(filename)
  if statinfo.st_size == expected_bytes:
    print('Found and verified', filename)
  else:
    print(statinfo.st_size)
    raise Exception(
        'Failed to verify ' + filename + \
        '. Can you get to it with a browser?')
  return filename

filename = maybe_download('text8.zip', 31344016)

读取数据集,转化为列表vocabulary(每个元素为单词)


# Read the data into a list of strings.
def read_data(filename):
  """
  Extract the first file enclosed in a zip file as a list of words.
  """
  with zipfile.ZipFile(filename) as f:
    data = tf.compat.as_str(f.read(f.namelist()[0])).split()
  return data

vocabulary = read_data(filename)
print('Data size', len(vocabulary))

根据vocabulary建立data, count, dictionary, reverse_dictionary

# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 50000


def build_dataset(words, n_words):
  """Process raw inputs into a dataset."""
  count = [['UNK', -1]]
  count.extend(collections.Counter(words).most_common(n_words - 1))
  dictionary = dict()
  for word, _ in count:
    dictionary[word] = len(dictionary)
  data = list()
  unk_count = 0
  for word in words:
    if word in dictionary:
      index = dictionary[word]
    else:
      index = 0  # dictionary['UNK']
      unk_count += 1
    data.append(index)
  count[0][1] = unk_count
  reversed_dictionary = dict(zip(dictionary.values(),
                                 dictionary.keys()))
  return data, count, dictionary, reversed_dictionary

data, count, dictionary, reverse_dictionary = build_dataset(vocabulary,
                                                            vocabulary_size)
del vocabulary  # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10],
      [reverse_dictionary[i] for i in data[:10]])

data_index = 0

按照skip-gram要求生成batch train data

  • num_skips : 从窗口中选取多少个(input, output)
# Step 3: Function to generate a training batch for the skip-gram model.
* num_skips : 从窗口中选取多少个(input,  )
def generate_batch(batch_size, num_skips, skip_window):
  global data_index
  assert batch_size % num_skips == 0
  assert num_skips <= 2 * skip_window
  batch = np.ndarray(shape=(batch_size), dtype=np.int32)
  labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
  span = 2 * skip_window + 1  # [ skip_window target skip_window ]
  buffer = collections.deque(maxlen=span)
  for _ in range(span):
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  for i in range(batch_size // num_skips):
    target = skip_window  # target label at the center of the buffer
    targets_to_avoid = [skip_window]
    for j in range(num_skips):
      while target in targets_to_avoid:
        target = random.randint(0, span - 1)
      targets_to_avoid.append(target)
      batch[i * num_skips + j] = buffer[skip_window]
      labels[i * num_skips + j, 0] = buffer[target]
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  # Backtrack a little bit to avoid skipping words in the end of a batch
  data_index = (data_index + len(data) - span) % len(data)
  return batch, labels

batch, labels = generate_batch(batch_size=8, num_skips=2,
                               skip_window=1)
for i in range(8):
  print(batch[i], reverse_dictionary[batch[i]],
        '->', labels[i, 0], reverse_dictionary[labels[i, 0]])

建立模型并训练

# Step 4: Build and train a skip-gram model.

batch_size = 128
embedding_size = 128  # Dimension of the embedding vector.
skip_window = 1       # How many words to consider left and right.
num_skips = 2         
# How many times to reuse an input to generate a label.

# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16     
# Random set of words to evaluate similarity on.
valid_window = 100  
# Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size,
                                  replace=False)
# 从np.arange(valid_window)中选valid——size个
num_sampled = 64    # Number of negative examples to sample.

graph = tf.Graph()

with graph.as_default():

  # Input data.
  train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
  train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
  valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

  # Ops and variables pinned to the CPU because of 
  # missing GPU implementation
  with tf.device('/cpu:0'):
    # Look up embeddings for inputs.
    embeddings = tf.Variable(
        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
    embed = tf.nn.embedding_lookup(embeddings, train_inputs)

    # Construct the variables for the NCE loss
    nce_weights = tf.Variable(
        tf.truncated_normal([vocabulary_size, embedding_size],
                            stddev=1.0 / math.sqrt(embedding_size)))
    nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

  # Compute the average NCE loss for the batch.
  # tf.nce_loss automatically draws a new sample of the negative labels each
  # time we evaluate the loss.
  loss = tf.reduce_mean(
      tf.nn.nce_loss(weights=nce_weights,
                     biases=nce_biases,
                     labels=train_labels,
                     inputs=embed,
                     num_sampled=num_sampled,
                     num_classes=vocabulary_size))

  # Construct the SGD optimizer using a learning rate of 1.0.
  optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

  # Compute the cosine similarity between minibatch examples and all embeddings.
  norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
  normalized_embeddings = embeddings / norm
  valid_embeddings = tf.nn.embedding_lookup(
      normalized_embeddings, valid_dataset)
  similarity = tf.matmul(
      valid_embeddings, normalized_embeddings, transpose_b=True)

  # Add variable initializer.
  init = tf.global_variables_initializer()

# Step 5: Begin training.
num_steps = 100001

with tf.Session(graph=graph) as session:
  # We must initialize all variables before we use them.
  init.run()
  print('Initialized')

  average_loss = 0
  for step in xrange(num_steps):
    batch_inputs, batch_labels = generate_batch(
        batch_size, num_skips, skip_window)
    feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}

    # We perform one update step by evaluating the optimizer op (including it
    # in the list of returned values for session.run()
    _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
    average_loss += loss_val

    if step % 2000 == 0:
      if step > 0:
        average_loss /= 2000
      # The average loss is an estimate of the loss over the last 2000 batches.
      print('Average loss at step ', step, ': ', average_loss)
      average_loss = 0

    # Note that this is expensive (~20% slowdown if computed every 500 steps)
    if step % 10000 == 0:
      sim = similarity.eval()
      for i in xrange(valid_size):
        valid_word = reverse_dictionary[valid_examples[i]]
        top_k = 8  # number of nearest neighbors
        nearest = (-sim[i, :]).argsort()[1:top_k + 1]
        log_str = 'Nearest to %s:' % valid_word
        for k in xrange(top_k):
          close_word = reverse_dictionary[nearest[k]]
          log_str = '%s %s,' % (log_str, close_word)
        print(log_str)
  final_embeddings = normalized_embeddings.eval()

tsne 降维可视化

# Step 6: Visualize the embeddings.


def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
  assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings'
  plt.figure(figsize=(18, 18))  # in inches
  for i, label in enumerate(labels):
    x, y = low_dim_embs[i, :]
    plt.scatter(x, y)
    plt.annotate(label,
                 xy=(x, y),
                 xytext=(5, 2),
                 textcoords='offset points',
                 ha='right',
                 va='bottom')

  plt.savefig(filename)

try:
  # pylint: disable=g-import-not-at-top
  from sklearn.manifold import TSNE
  import matplotlib.pyplot as plt

  tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
  plot_only = 500
  low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
  labels = [reverse_dictionary[i] for i in xrange(plot_only)]
  plot_with_labels(low_dim_embs, labels)

except ImportError:
  print('Please install sklearn, matplotlib, and scipy to show embeddings.')

运行结果

  • 部分代码输出
  • 可视化词向量
1.0.1
Found and verified text8.zip
Data size 17005207
Most common words (+UNK) [['UNK', 418391], ('the', 1061396), ('of', 593677), ('and', 416629), ('one', 411764)]
Sample data [5242, 3082, 12, 6, 195, 2, 3137, 46, 59, 156] ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against']
3082 originated -> 12 as
3082 originated -> 5242 anarchism
12 as -> 6 a
12 as -> 3082 originated
6 a -> 12 as
6 a -> 195 term
195 term -> 2 of
195 term -> 6 a

Average loss at step  2000 :  113.561805058
Average loss at step  4000 :  52.6443465168
Average loss at step  6000 :  33.354344763
Average loss at step  8000 :  23.1323922411
Average loss at step  10000 :  18.2816311638
Nearest to b: marriage, authorities, anti, punts, molecules, unionists, province, traffic,
Nearest to can: majesty, archie, review, antonym, arabs, robeson, healthy, factors,
Nearest to first: agave, boroughs, in, restaurant, of, symbol, apiaceae, developed,
Tensorflow 1.0 实现word2vec之skip-gram_第1张图片
Paste_Image.png

参考文献

  • http://www.thushv.com/natural_language_processing/word2vec-part-1-nlp-with-deep-learning-with-tensorflow-skip-gram/

高级版本的word2vec实现

https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec.py

你可能感兴趣的:(Tensorflow 1.0 实现word2vec之skip-gram)