- Java大厂面试实录:谢飞机的电商场景技术问答(Spring Cloud、MyBatis、Redis、Kafka、AI等)
Java大厂面试实录:谢飞机的电商场景技术问答(SpringCloud、MyBatis、Redis、Kafka、AI等)本文模拟知名互联网大厂Java后端岗位面试流程,以电商业务为主线,由严肃面试官与“水货”程序员谢飞机展开有趣的对话,涵盖SpringCloud、MyBatis、Redis、Kafka、SpringSecurity、AI等热门技术栈,并附详细解析,助力求职者备战大厂面试。故事设定谢
- “Datawhale AI夏令营”基于带货视频评论的用户洞察挑战赛
fzyz123
DatawhaleAI夏令营人工智能Datawhale大模型技术NLP深度学习AI夏令营
前言:本次是DatawhaleAI夏令营2025年第一期的内容,赛事是:基于带货视频评论的用户洞察挑战赛(科大讯飞AI大赛)一、赛事背景在直播电商爆发式增长浪潮中,短视频平台积累的海量带货视频及用户评论数据蕴含巨大商业价值。这些数据不仅是消费者体验的直接反馈,更是驱动品牌决策的关键资产。用户洞察的核心在于视频内容与评论数据的联合挖掘:通过智能识别推广商品分析评论中的情感表达与观点聚合精准捕捉消费者
- 数字孪生技术为UI前端注入新活力:实现产品设计的沉浸式体验
ui设计前端开发老司机
ui
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:从“平面交互”到“沉浸体验”的UI革命当用户在电商APP中翻看3D家具模型却无法感知其与自家客厅的匹配度,当设计师在2D屏幕上绘制汽车内饰却难以预判实际乘坐体验——传统UI设计的“平面化、静态化、割裂感”
- [特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
- Java设计模式实战:高频场景解析与避坑指南
mckim_
笔记学习java设计模式
引言设计模式是软件开发的基石,但许多开发者面对23种模式时容易陷入“学完就忘”或“滥用模式”的困境。本文从工业级项目视角出发,精选10种高频设计模式,结合真实代码案例与主流框架应用,帮你建立模式思维,拒绝纸上谈兵。一、创建型模式:告别new的暴力美学1.工厂方法模式(FactoryMethod)核心痛点:对象创建逻辑散落各处,难以统一管理。场景案例:电商平台需要支持多种支付方式(支付宝、微信、银联
- Flink时间窗口详解
bxlj_jcj
Flinkflink大数据
一、引言在大数据流处理的领域中,Flink的时间窗口是一项极为关键的技术,想象一下,你要统计一个电商网站每小时的订单数量。由于订单数据是持续不断产生的,这就形成了一个无界数据流。如果没有时间窗口的概念,你就需要处理无穷无尽的数据,难以进行有效的统计分析。而时间窗口的作用,就是将这无界的数据流按照时间维度切割成一个个有限的“数据块”,方便我们对这些数据进行处理和分析。比如,我们可以定义一个1小时的时
- Flink DataStream API详解(一)
bxlj_jcj
Flinkflink大数据
一、引言Flink的DataStreamAPI,在流处理领域大显身手的核心武器。在很多实时数据处理场景中,如电商平台实时分析用户购物行为以实现精准推荐,金融领域实时监控交易数据以防范风险,DataStreamAPI都发挥着关键作用,能够对源源不断的数据流进行高效处理和分析。接下来,就让我们一起深入探索FlinkDataStreamAPI。二、DataStream编程基础搭建在开始使用FlinkDa
- Elasticsearch搜索引擎存储:从原理到实践的全景解析
Python×CATIA工业智造
搜索引擎elasticsearch大数据
引言在大数据时代,数据规模呈指数级增长,传统数据库的模糊查询、实时分析能力逐渐成为瓶颈。Elasticsearch(简称ES)凭借其分布式架构、实时搜索和灵活的数据分析能力,成为企业级搜索与存储的核心引擎。截至2025年,ES在全球日志分析、电商搜索、实时监控等场景的市场占有率超过60%。本文将从存储架构、核心技术、应用场景及优化策略四个维度,深入解析Elasticsearch的设计哲学与实践价值
- 2025年网站源站IP莫名暴露全因排查指南:从协议漏洞到供应链污染
引言:IP暴露已成黑客“破门锤”2025年,全球因源站IP暴露导致的DDoS攻击同比激增217%,某电商平台因IP泄露遭遇800Gbps流量轰炸,业务瘫痪12小时损失超5000万元。更严峻的是,60%的IP暴露并非配置失误,而是新型攻击手法与供应链漏洞的叠加结果——本文将揭示IP暴露的隐秘链条,并提供可落地的闭环解决方案。一、2025年IP暴露的四大技术根源1.协议层漏洞:内存数据被“抽丝剥茧”C
- 推荐系统中的归因分析
liliangcsdn
人工智能大数据
推荐系统中,归因分析(AttributionAnalysis)分析用户完成转化前到底是哪个渠道最起决定性作用。参考网络相关资料,常用的用户转化归因分析模型有如下6种,现收录参阅。1)最后点击归因转化全部归因于用户转化前最后一次点击的渠道。用户8月1日小红书种草,8月5日搜索官网,8月10日淘宝广告点击并完成下单。“最后点击归因”将此次转化归于淘宝广告,适用电商促销季投放归因。2)首次点击归因转化价
- 图神经网络:挖掘关系数据中的宝藏
图神经网络:挖掘关系数据中的宝藏在浩瀚的数据海洋中,蕴藏着一类特殊而强大的资源——关系数据。它们不是孤立的点,而是相互连接、彼此影响的复杂网络:社交平台上朋友的朋友、电商系统中商品与用户的互动、蛋白质分子内原子的结合、城市交通网中的道路连接……这些数据天然以图的形式存在,节点代表实体,边则承载着实体间千丝万缕的关系。传统的数据挖掘工具面对这些盘根错节的结构往往力不从心,而图神经网络(GNN)的崛起
- 【数据攻略】字节面试真题(含答案)+100道面试题库
六哥(数据攻略)
面试数据分析java
整理了一套字节的面试真题,还有100道PDF版的面试题库一、SQL题面试真题1:抖音电商平台,现有一张订单表(order_info),有以下字段:order_idgoods_idorder_amt请统计销量金额前10的商品信息。▼参考答案:此题考察的知识点较为简单,主要是考察GROUPBY和窗口函数。面试真题2:现有一张用户登录表(user_login_log),请统计2021.9.1之前活跃过,
- 国内主流云服务平台对比:选型指南与价格全初解
大家好!在数字化转型的浪潮下,云服务器已成为企业和开发者的基础设施首选。面对阿里云、腾讯云、华为云、百度智能云等主流服务商,如何根据性能、价格和场景需求做出最优选择?本文结合最新市场数据,为你深度解析!一、四大云服务商核心特点与适用场景1.阿里云优势:国内市场份额超40%,全球覆盖最广(49个可用区),服务稳定性强,尤其适合电商、金融、政务等高并发场景。提供飞天操作系统、弹性计算ECS等核心技术,
- 影华科技与迷你世界官方签约,共筑线下IP潮玩店新蓝图
2025年6月27日,于影华总部(广州),广州影华科技有限公司(以下简称影华)与深圳格物工坊电子商务有限公司(迷你世界官方)(以下简称格物电子)签约仪式圆满举行,双方正式构建深度战略合作伙伴关系。广州影华科技有限公司是一家专注于VR、AR及5D动感技术应用设备研发、生产、销售及运营服务的高科技企业,致力于打造沉浸式体验项目并推动数字化技术在文旅及虚拟现实领域的应用。深圳格物工坊电子商务有限公司是深
- 大模型微服务架构:拆解AI应用的资源密码
陈乔布斯
大模型AI人工智能人工智能架构微服务AI大模型pythonAPI
引言:为什么大模型应用需要微服务架构?想象你经营一家网红餐厅,刚开始只有一个厨师负责所有菜品(类似单体架构)。随着生意火爆,顾客需要川菜、粤菜、甜品等多种选择,单个厨师忙不过来,还经常出错。于是你招聘了川菜师傅、粤菜师傅、甜品师,每人专注一个领域(类似微服务架构),效率和质量立刻提升——这就是大模型应用从单体架构转向微服务的核心原因。随着ChatGPT、文心一言等大模型技术的爆发,互联网企业正将大
- AI 提示词工程(Prompt Engineering)之提示词应用场景(信息提取)
引言:合规时代的信息提取技术在数字化浪潮中,互联网企业每天处理着海量数据——电商平台的用户评论、金融机构的交易文档、企业的合同条款……这些数据如同深埋的金矿,而信息提取技术就是挖掘价值的工具。但随着《网络数据安全管理条例》等法规的实施,信息提取已不再是简单的技术问题,而是合规与效率的平衡艺术。2025年,提示词工程已发展出专为合规场景设计的技术体系,能够精准提取有价值信息的同时,自动规避敏感内容、
- 零代码玩转大模型!LLaMA Factory:你的专属模型精修师
jane_xing
人工智能llama
你是否曾对大语言模型(LLM)的强大能力心驰神往,却苦于以下难题?想定制专属模型?微调代码看不懂,环境配置太复杂…硬件资源有限?动辄需要数张A100,普通设备望而却步…中文任务不给力?原生模型中文理解弱,效果难达预期…部署门槛高?模型优化、压缩、服务化步步是坎?好消息是:LLaMAFactory来拯救你啦!它就像一家功能齐全的“模型精修店”,让你无需深厚AI功底,也能轻松定制、优化和部署大模型!一
- 面试必问的线程池原理与实战:从源码到应用全解析
混进IT圈
Java线程池面试多线程并发编程TomcatNetty
摘要:本文结合JDK官方文档、《Java并发编程实战》等权威资料,深入剖析线程池的核心原理,并通过电商、消息中间件等真实场景演示选型策略。全文包含20+代码示例、5大避坑指南,帮你轻松应对面试中的高频考点。一、线程池核心原理:从JDK源码到Tomcat扩展1.1JDK原生线程池的工作机制(附源码)JDK线程池的核心是ThreadPoolExecutor,其工作流程可概括为://核心执行逻辑(简化版
- 淘宝直播与开源链动2+1模式AI智能名片S2B2C商城小程序的融合发展研究
说私域
人工智能小程序开源
摘要:本文聚焦于淘宝直播这一以“网红”内容为主的社交电商平台,深入分析其特点与流量入口优势。同时,引入开源链动2+1模式AI智能名片S2B2C商城小程序这一新兴概念,探讨二者融合的可能性与潜在价值。通过分析融合过程中的技术、市场、运营等方面因素,旨在为电商行业的创新发展提供新的思路与策略,以实现更高效的内容变现、用户拓展与商业生态构建。关键词:淘宝直播;开源链动2+1模式;AI智能名片;S2B2C
- 【商城实战(77)】商城智能客服系统搭建指南:选型与集成全攻略
奔跑吧邓邓子
商城实战商城实战智能客服系统搭建uniappElementPlusSPringBoot
【商城实战】专栏重磅来袭!这是一份专为开发者与电商从业者打造的超详细指南。从项目基础搭建,运用uniapp、ElementPlus、SpringBoot搭建商城框架,到用户、商品、订单等核心模块开发,再到性能优化、安全加固、多端适配,乃至运营推广策略,102章内容层层递进。无论是想深入钻研技术细节,还是探寻商城运营之道,本专栏都能提供从0到1的系统讲解,助力你打造独具竞争力的电商平台,开启电商实战
- 2025社交电商新风口:推客小程序的商业逻辑与技术实现
wx_ywyy6798
信息可视化推客系统推客系统开发推客小程序推客小程序开发推客分销系统小程序
一、推客小程序市场前景与商业价值在当今社交电商蓬勃发展的时代,推客小程序已成为连接商家与消费者的重要桥梁。推客模式结合了社交传播与电商变现的双重优势,通过用户自发分享带来裂变式增长,为商家创造了全新的营销渠道。推客小程序的核心优势:低成本获客:利用用户社交关系链实现病毒式传播,大幅降低传统广告投放成本高转化率:基于熟人信任关系的推荐,转化率远超传统电商平台用户粘性强:通过佣金激励体系持续激活用户参
- 灰度发布策略制定方案时可以参考的几个维度
选择用户群体并设计合理的分组策略是控制风险、验证功能效果策略总结:一、选择用户群体的核心原则代表性覆盖用户需覆盖核心特征(如地域、设备类型、使用场景),确保测试结果能反映整体用户行为。例如,电商灰度发布时需同时包含一线城市和下沉市场的用户。风险可控性优先选择对系统稳定性影响较小的用户(如非核心业务用户),避免关键用户(如VIP客户)因新版本问题流失。数据可观测性用户需具备完整的行为埋点数据(如点击
- 从零到一:王者荣耀英雄数据采集与技能图谱异步爬虫实战
程序员威哥
爬虫python开发语言自动化scrapy
引言:随着游戏行业的迅猛发展,王者荣耀作为一款深受玩家喜爱的手游,其英雄数据和技能信息成为了爬虫开发者研究的热点之一。通过抓取英雄数据并对技能图谱进行可视化,我们不仅能够更好地理解游戏数据,还可以为游戏爱好者或数据分析师提供一个有价值的数据分析平台。本篇文章将带你一步步实现王者荣耀英雄数据的采集与技能图谱的可视化,并使用异步爬虫技术提高爬取效率。我们将结合实际开发中的需求,深入讲解如何使用异步爬虫
- Java多线程实战指南:从基础到高并发的核心技术解析
添砖Java中
javapython开发语言springbootspringcloudspring
一、为什么必须掌握多线程?在单核CPU时代,多线程主要用于提高程序响应速度;在如今的多核处理器时代,多线程已成为榨干硬件性能的必备技能。无论是高并发Web服务器、实时数据处理系统,还是游戏引擎,都离不开多线程技术的支撑。典型案例:电商秒杀系统:1秒内处理10万+请求大数据处理:并行计算TB级数据金融交易系统:毫秒级订单撮合二、线程创建的四大核心方式1.继承Thread类(不推荐)classMyTh
- TikTok短视频引爆代购:单条视频日销1.2万单的底层逻辑
Joe13265449558
电商跨境电商代购系统无货源自建站
TikTok+代购系统:如何通过短视频引流实现日销万单?引言:TikTok电商的“流量核弹”与代购新机遇2025年,TikTok全球月活跃用户突破15亿,覆盖200+国家和地区,其短视频+直播的电商模式成为跨境代购的“流量核弹”。数据显示,通过TikTok短视频引流的代购订单占比从2023年的12%飙升至2025年的47%,单条爆款视频可带来超10万次商品点击,转化率高达8.3%。本文将拆解Tik
- 牛客周赛 Round 56
洋洋的计算机刷题日记
牛客竞赛网比赛刷题算法
牛客周赛Round56A面包店故事链接:https://ac.nowcoder.com/acm/contest/88392/A来源:牛客网题目描述小镇上有一家面包店,面包以元的价格出售,加元可以多加几块培根。小歪带着元来到了面包店,他想知道自己能不能买到加培根的面包?输入描述:在一行上输入三个整数,,(1≤,,≤100)代表面包的价格、培根的价格和小歪带的钱。输出描述:如果小歪能加到培根,在一行上
- 人工智能大模型如何助力产品经理优化商品定价策略
产品经理独孤虾
人工智能产品经理智能营销数字营销价格策略大模型电子商务
摘要商品定价策略是电商、广告营销和用户增长等数字化营销业务中的重要环节,它直接影响着企业的收入和利润,以及用户的满意度和忠诚度。本文从产品经理的视角,介绍了如何应用人工智能大模型来优化商品定价策略的步骤,包括分析商品定价策略的影响因素、市场需求预测、商品成本分析、商品定价策略优化和使用人工智能大模型优化商品定价策略。本文旨在帮助产品经理和运营人员了解人工智能大模型在商品定价策略中的作用和价值,以及
- 产品经理案例学习库
火火PM打怪中
产品经理学习
以下是专为产品经理打造的高质量学习交流平台,均包含实战文档库和案例解析功能,按优先级推荐:国内垂直社区(支持中文文档浏览)平台名称文档资源亮点访问方式人人都是产品经理-专属【文档模板】专栏(PRD/BRD/MRD等)-大厂案例:腾讯/阿里产品需求文档解密-支持按行业筛选(SaaS/电商/AI等)www.woshipm.comPMCAFF-【原型档案馆】收录2000+真实产品原型-网易/美团产品总监
- 聚合分销系统开发实战:覆盖短剧/小说/外卖/电商/网盘/APP拉新的CPS+CPA双模式技术架构解析
v_qutudy
聚合分销聚合cps+cpaapp拉新项目
一、系统架构设计:微服务与中台化双引擎1.1分布式微服务架构采用SpringCloudAlibaba框架构建,将系统拆分为8大核心服务:mermaidgraphTDA[用户中心]-->B[订单服务]A-->C[结算服务]D[内容中台]-->E[短剧服务]D-->F[小说服务]G[生活服务]-->H[外卖接口]G-->I[电商接口]J[网盘服务]-->K[拉新模块]关键技术选型:注册中心:Nacos
- 机器学习深度学习驱动在光子学设计中的应用与未来【专题培训会议邀您共探科技前沿】
软研科技
信息与通信信号处理量子计算人工智能
一、背景介绍在智能科技飞速发展的今天,光子学设计与智能算法的结合正成为科研创新的热点。深度学习、机器学习等算法在光子器件的逆向设计、超构表面材料设计、光学神经网络构建等方面展现出巨大潜力。二、会议亮点由北京软研国际信息技术研究院主办的“智能算法驱动的光子学设计与应用”专题培训会议,将深入探讨以下核心内容:光子器件的逆向设计:利用深度学习优化多参数光子器件设计。超构表面与超材料设计:智能算法在新型光
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号