Never regret. If it’s good, it’s wonderful. If it’s bad, it’s experience.
不必遗憾。若是美好,叫做精彩。若是糟糕,叫做经历。
设$a_1,a_2,\cdots,a_n\in\mathbb{R}$.证明: $\sum_{i,j=1}^n\frac{a_ia_j}{i+j}\geq 0$.
注意到
\begin{align*}
\sum_{i,j=1}^n\frac{a_ia_j}{i+j}
&=\sum_{i,j=1}^na_ia_j\int_0^1x^{i+j-1}\,\mathrm{d}x\\
&=\int_0^1\frac{1}{x}\sum_{i,j=1}^n\left(a_ix^i\right)\left(a_jx^j\right)\,\mathrm{d}x
=\int_0^1\frac{1}{x}\left(\sum_{i=1}^na_ix^i\right)^2\geq 0.
\end{align*}
(hshhz)
(2020年北大数分)判断$f(x)=\frac{x}{1+x\cos^2 x}$在$[0,+\infty)$上是否一致连续.
(2020年北大数分)设$q_k\geq p_k>0$, $q_{k+1}-q_k\geq p_k+p_{k+1}$且$\sum_{k=1}^{\infty}a_k\ln p_k=+\infty$,记
\begin{align*}
T_{p_k,q_k}(x)\triangleq &\frac{\cos (q_k+p_k)x}{p_k}+\frac{\cos (q_k+p_k-1)x}{p_k-1}+\frac{\cos (q_k+p_k-2)x}{p_k-2}+\cdots+\frac{\cos (q_k+1)x}{1}\\
& -\frac{\cos (q_k-1)x}{1}-\frac{\cos (q_k-2)x}{2}-\cdots-\frac{\cos (q_k-p_k)x}{p_k},
\end{align*}
设$a_k\geq 0,\sum_{k=1}^{\infty}a_k<+\infty$, $f(x)=\sum_{k=1}^{\infty}a_kT_{p_k,q_k}(x)$.
\begin{enumerate}
\item[(1)] 求证: $f(x)$是在$\mathbb{R}$上连续的以$2\pi$为周期的周期函数.
\item[(2)] 判断并证明: $f(x)$的Fourier级数在$x=0$处的收敛性.
\end{enumerate}
1. $f(x)$对任意$x_0\in [a,b]$都上半连续,问$f(x)$在$[a,b]$上是否有最大值,给出证明或反例.
2. $f(x)$在$[1,+\infty)$连续且满足:对任意$x,y\in [1,+\infty)$,有$f(x+y)\leq f(x)+f(y)$.问$\lim_{x\to+\infty}\frac{f(x)}{x}$是否存在.
3. 已知$f(x)$在$[0,1]$连续,单调增加且$f(x)\geq 0$,记
\[s=\frac{\int_{0}^{1}xf(x)\,\mathrm{d}x}{\int_{0}^{1}f(x)\,\mathrm{d}x}.\]
\begin{enumerate}[(1)]
\item 证明$s\geq \frac{1}{2}$.
\item 比较$\int_{0}^{s}f(x)\,\mathrm{d}x$与$\int_{s}^{1}f(x)\,\mathrm{d}x$的大小. (可以用物理或几何直觉)
\end{enumerate}
4.判断$f(x)=\frac{x}{1+x\cos^2 x}$在$[0,+\infty)$上是否一致连续.
5.根据$\int_{0}^{+\infty}\frac{\sin x}{x}\,\mathrm{d}x=\frac{\pi}{2}$,计算$\int_{0}^{+\infty}\left(\frac{\sin x}{x}\right)^2\,\mathrm{d}x$,并说明计算依据.
6.在承认平面Green公式的前提下证明如下特殊情况下的Stokes公式
\[\oint_\Gamma R(x,y,z)\,\mathrm{d}z=\iint_\Sigma\frac{\partial R}{\partial y}dydz-\frac{\partial R}{\partial x}dzdx.\]
7.设$0
\[\int_{0}^{1}x^{p-1}(1-x)^{-p}dx=\frac{\pi}{\sin(p\pi)}.\]
8.设$C_r$为半径为$r$的圆周, $f(x,y)$满足$f(0,0)=0,\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}=x^2+y^2$, $f(x,y)$是$C^2$的,计算$A(r)=\int_{C_r}f(x,y)\,\mathrm{d}s$.
9.设$q_k\geq p_k>0$, $q_{k+1}-q_k\geq p_k+p_{k+1}$且$\sum_{k=1}^{\infty}a_k\ln p_k=+\infty$,记
\begin{align*}
T_{p_k,q_k}(x)\triangleq &\frac{\cos (q_k+p_k)x}{p_k}+\frac{\cos (q_k+p_k-1)x}{p_k-1}+\frac{\cos (q_k+p_k-2)x}{p_k-2}+\cdots+\frac{\cos (q_k+1)x}{1}\\
& -\frac{\cos (q_k-1)x}{1}-\frac{\cos (q_k-2)x}{2}-\cdots-\frac{\cos (q_k-p_k)x}{p_k},
\end{align*}
设$a_k\geq 0,\sum_{k=1}^{\infty}a_k<+\infty$, $f(x)=\sum_{k=1}^{\infty}a_kT_{p_k,q_k}(x)$.
\begin{enumerate}
\item[(1)] 求证: $f(x)$是在$\mathbb{R}$上连续的以$2\pi$为周期的周期函数.
\item[(2)] 判断并证明: $f(x)$的Fourier级数在$x=0$处的收敛性.
\end{enumerate}
1. $f(x)$对任意$x_0\in [a,b]$都上半连续,问$f(x)$在$[a,b]$上是否有最大值,给出证明或反例.
2. $f(x)$在$[1,+\infty)$连续且满足:对任意$x,y\in [1,+\infty)$,有$f(x+y)\leq f(x)+f(y)$.问$\displaystyle\lim_{x\to+\infty}\frac{f(x)}{x}$是否存在.
3. 已知$f(x)$在$[0,1]$连续,单调增加且$f(x)\geq 0$,记
$$s=\frac{\int_{0}^{1}xf(x)\,\mathrm{d}x}{\int_{0}^{1}f(x)\,\mathrm{d}x}.$$
(1)证明$s\geq \frac{1}{2}$.
(2)比较$\displaystyle\int_{0}^{s}f(x)\,\mathrm{d}x$与$\displaystyle\int_{s}^{1}f(x)\,\mathrm{d}x$的大小. (可以用物理或几何直觉)
4.证明$\displaystyle f(x)=\frac{x\cos x}{1+\sin^2x}$在$[0,+\infty)$上一致连续.
5.根据$\displaystyle\int_{0}^{+\infty}\frac{\sin x}{x}\,\mathrm{d}x=\frac{\pi}{2}$,计算$\displaystyle\int_{0}^{+\infty}\left(\frac{\sin x}{x}\right)^2\,\mathrm{d}x$,并说明计算依据.
6.在承认平面Green公式的前提下证明如下特殊情况下的Stokes公式
$$\oint_\Gamma R(x,y,z)\,\mathrm{d}z=\iint_\Sigma\frac{\partial R}{\partial y}dydz-\frac{\partial R}{\partial x}dzdx.$$
7.设$0< p<1$,求$f(x)=\cos px$在$[-\pi,\pi]$上的Fourier级数,由此证明余元公式
$$\int_{0}^{1}x^{p-1}(1-x)^{-p}dx=\frac{\pi}{\sin(p\pi)}.$$
8.设$C_r$为半径为$r$的圆周, $f(x,y)$满足$\displaystyle f(0,0)=0,\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}=x^2+y^2$, $f(x,y)$是$C^2$的,计算$\displaystyle A(r)=\int_{C_r}f(x,y)\,\mathrm{d}s$.
9.设$q_k\geq p_k>0$,
$$T_{p_k,q_k}(x)=\frac{\cos(p_k+1)x}{p_k}+\cdots
+\frac{\cos(p_k+q_k)x}{p_k}-\frac{\cos(q_k+1)x}{q_k}-\cdots
-\frac{\cos(q_k+p_k)x}{q_k}$$
(1) 证明$\displaystyle f(x)=\sum_{k=1}^{\infty}a_kT_{p_k,q_k}(x)$是以$2\pi$为周期的函数;
(2) $x=0$处收敛性. (注:题目不完整)