- 报告下载丨北京大学:2025年DeepSeek在教育和学术领域的应用场景与案例(上)报告下载丨德勤:2025年生成式AI档案报告下载丨SuperCLUE 中文大模型基准测评 2025
智能计算研究中心
人工智能
该报告全面探讨了DeepSeek在教育和学术领域的应用。DeepSeek在2024-2025年推出的模型引发国际关注,其通过提升推理能力、全量开源、降低成本及国产自主研发等优势,在教育行业推动了范式革命。报告涵盖了从学前教育到特殊教育的各个阶段,列举了高校如北京大学的学科专业问答工具、北大青鸟的实训平台等应用案例。为教育工作者提供了系统指导,有助于推动教育创新,培养适应AI时代的各类人才。
- [AI笔记]-Word2Vec面试考点
Micheal超
AI笔记人工智能笔记word2vec
✅一、基础认知类什么是Word2Vec?它的基本思想是什么?关键词:将词语转换为向量表示;捕捉语义关系;基于上下文预测Word2Vec与One-hot编码的区别?关键词:维度灾难(维度过高,存储空间大)、高稀疏性、语义表达能力(没有距离概念,无法计算相似度)、内积关系Word2Vec的两种模型是什么?它们有何区别?答案:Word2Vec的重要假设:文本中离得越近的词语相似度越高。主要有:CBOW(
- 大模型学习 (Datawhale_Happy-LLM)笔记7: Encoder-Decoder PLM
lxltom
学习笔记languagemodel自然语言处理神经网络人工智能深度学习
大模型学习(Datawhale_Happy-LLM)笔记7:Encoder-DecoderPLM1.Encoder-Decoder架构概述1.1架构基础Encoder-DecoderPLM是基于原始Transformer架构的完整实现,它同时保留了编码器(Encoder)和解码器(Decoder)两个核心组件。这种设计使得模型能够兼具文本理解和生成的双重能力,特别适合处理序列到序列(Seq2Seq
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- 为 Agentic AI 的黎明构建地基
人工智能
在技术领域,我们常常被那些闪耀的、可见的成果所吸引。今天,这个焦点无疑是大语言模型技术。它们的流畅对话、惊人的创造力,让我们得以一窥未来的轮廓。然而,作为在企业一线构建、部署和维护复杂系统的实践者,我们深知,一个卓越的模型,本身并不能构成一个成功的企业级解决方案。它就像一座精心设计的摩天大楼的塔尖,倘若没有深植于地下的坚实地基,再璀璨的光芒也终将是昙花一现。真正的挑战,也是真正的价值所在,在于构建
- 数据结构:递归:汉诺塔问题(Tower of Hanoi)
95号闪电麦坤
数据结构数据结构
目录问题描述第一性原理分析代码实现第一步:明确函数要干什么第二步:写好递归的“结束条件”第三步:写递归步骤递归调用树问题描述有三个柱子(A,B,C),上面有n个大小不等的圆盘,最开始所有圆盘按从大到小顺序堆在柱子A上。目标:将所有圆盘移动到柱子C,移动时要满足:一次只能移动一个盘子;任何时刻小盘子不能压在大盘子上。❓核心问题:如何将n个盘子从A移动到C,同时只用B做辅助,且不违反约束?第一性原理分
- 提示技术系列——主动提示
AIGC包拥它
提示技术人工智能promptpythonlangchain
什么是提示技术?提示技术是实现提示工程目标的具体技术手段,是提示工程中的“工具库”。什么又是提示工程?提示工程是指通过设计、优化和迭代输入到大语言模型(LLM)的提示(Prompt),系统性提升模型输出质量(如相关性、准确性、可控性)的实践领域。它是一个覆盖全流程的方法论,包括:明确目标任务(如生成教学内容、问答、翻译);设计提示结构(如指令、上下文、示例);选择模型与参数(如温度、top_p);
- 【ISAQB大纲解读】软件密集型系统的三大分类
小马哥编程
系统架构架构
软件密集型系统的类型划分为信息系统、嵌入式系统和移动系统,主要基于其应用场景、功能定位、硬件依赖程度及软件设计逻辑的显著差异。以下从三类系统的核心特征、典型场景及分类逻辑展开分析:一、软件密集型系统的定义与分类逻辑软件密集型系统指软件在系统功能实现中起决定性作用的系统,其分类本质上反映了不同场景下软件与硬件、业务需求的耦合方式。三类系统的划分依据包括:应用领域:商业办公、设备控制、移动交互等不同场
- Python私有属性:隐藏数据的秘密武器
有奇妙能力吗
知识分享Pythonpython开发语言
Python私有属性详解:为什么我们需要“隐藏”对象的数据?一、引言在面向对象编程中,封装(Encapsulation)是三大基本特性之一(另外两个是继承和多态)。而“私有属性”就是实现封装的重要手段之一。在Python中虽然不像Java或C++那样严格区分访问权限,但依然提供了一种机制来限制对类内部属性的直接访问。本文将带你深入了解:什么是私有属性?如何定义私有属性?私有属性的原理与注意事项使用
- 35岁被优化,想转行AI?华为HCIE-AI是“救命稻草”还是“天坑”?
博睿谷IT99_
人工智能华为华为认证职业规划
粉丝宝宝私信我:“姐,我今年35了,真卡在这个尴尬的年龄点上。屋漏偏逢连夜雨,公司最近人员调整,我...被优化了。对这个行业真的心灰意冷,想彻底转行。看网上华为AI认证的风刮得特别大,什么HCIE-AI听起来就很牛,说是大神级别?我这把年纪了,0基础转过去,这玩意儿到底靠不靠谱?值不值得我allin去考啊?求真实科普!”看到这条私信,心里挺不是滋味。35岁遭遇职业转折,迷茫和压力可想而知。关于华为
- CLIP之后,多模态模型将如何进化?三大技术路径解析
老周聊AI
AI大模型人工智能MCP机器学习神经网络深度学习AI大模型大模型训练框架
多模态学习的革命:CLIP技术深度解析关注老周不迷路本文较长,建议点赞收藏以免遗失。由于文章篇幅有限,更多涨薪知识点,也可在主页查看最新AI大模型应用开发学习资料免费领取引言:多模态学习的时代来临在人工智能领域,多模态学习正成为最具前景的研究方向之一。传统AI系统通常专注于单一模态(如纯文本或纯图像),而人类认知的本质却是多模态的——我们通过视觉、听觉、触觉等多种感官协同理解世界。OpenAI于2
- 华为认证二选一:物联网 VS 人工智能,你的赛道在哪里?
博睿谷IT99_
物联网人工智能华为华为认证
一篇不讲情怀只讲干货的科普指南一、华为物联网&人工智能到底在搞什么?华为物联网(IoT)的核心是“万物互联”。通过传感器、通信技术(如NB-IoT/5G)、云计算平台(如OceanConnect),将物理设备(车、路灯、工厂机器)连入网络,实现数据采集、远程控制和智能决策。大白话就是:它让哑巴设备学会“说话”。华为人工智能(AI)的核心是“让机器学会思考”。聚焦大模型训练、部署与应用(如昇腾AI解
- 嵌入模型 vs 大语言模型:语义理解能力的本质区别与应用场景
chenkangck50
AI大模型语言模型人工智能机器学习
嵌入模型vs大语言模型:语义理解能力的本质区别与应用场景(实战视角)一句话总结嵌入模型的“理解”是向量表示和相似性匹配,适合做召回;大语言模型的“理解”是上下文+逻辑+世界知识综合判断,适合做分析与生成。重点是可以结合prompt和本身具有的知识两类模型的本质区别能力项嵌入模型(如BGE、SBERT)大语言模型(如GPT、GLM、DeepSeek)输出形式向量(如768维)自然语言文本(如答案、解
- 修饰符 Modifiers
翻滚吧键盘
vue前端javascript开发语言
好的,我们来详细讲解Vue中的修饰符(Modifiers)。修饰符是以点(.)开头的特殊后缀,用于告知指令(如v-on或v-model)应该以某种特殊的方式来绑定。它们极大地简化了代码,让我们不必在方法中编写大量的事件处理逻辑。Vue的修饰符主要分为三大类:事件修饰符(EventModifiers):用于v-on(简写为@)指令。v-model修饰符(v-modelModifiers):用于v-m
- 网络延迟诊断与优化:从路由到应用层的全链路分析
Clownseven
网络智能路由器
更多云服务器知识,尽在hostol.com你有没有在日常工作中体验过网络延迟带来的焦虑?浏览器页面加载缓慢,API请求几秒钟不返回,甚至服务器上的某个微服务迟迟无法响应。每次点击刷新页面,你的心里是否已经准备好迎接各种负面反馈?网络延迟,简而言之,就是数据从源头传输到目的地所花的时间。你可能认为延迟只是一个小问题,可当延迟问题累积,可能就会变成让整个系统瘫痪的大隐患。我们每一个运维人员都清楚,任何
- C#测试实战:从集成到端到端——代码级深度解析与工程化实践
墨夶
C#学习资料c#开发语言
——零侵入框架设计、自动化工具链与真实场景模拟为什么需要“测试金字塔”?在微服务架构下,C#应用的复杂性呈指数级增长。集成测试(IntegrationTesting)和端到端测试(E2ETesting)是保障系统稳定性的两大核心防线:集成测试:验证模块间协作,定位接口与依赖问题端到端测试:模拟真实用户场景,确保全链路流程无误本文通过代码实战,从依赖注入模拟到浏览器自动化,构建一个企业级测试框架,并
- C#与MR的量子级交互:用代码构建会呼吸的混合现实界面,让UI消失在空气中!
墨夶
C#学习资料c#mr交互
一、混合现实革命:MR界面设计的三大颠覆性原则1.1传统UI的终结与MR的崛起空间即界面:物理空间成为交互载体,告别屏幕束缚手势即语言:自然手势取代鼠标键盘,交互效率提升300%数据可视化革命:3D全息投影让抽象数据具象化案例:某汽车厂商用MR界面将发动机数据投影在真实引擎上,维修效率提升65%1.2C#在MR开发中的核心优势特性C#实现其他语言对比空间计算Unity+ARFoundation提供
- 【Java实战】高并发场景下账户金额操作的解决方案
.猫的树
【Java实战】系列Java并发编程分布式锁高并发解决方案原子操作数据库事务
文章目录前言:金融系统中的并发危机一、并发问题现场还原1.1问题代码示例1.2并发测试暴露问题1.3问题根源分析二、五大解决方案深度剖析2.1synchronized同步锁2.2ReentrantLock显式锁2.3CAS无锁编程(Atomic原子类)2.4数据库乐观锁2.5分布式锁(Redis实现)三、方案选型指南四、防踩坑指南总结前言:金融系统中的并发危机在支付系统、电商平台等金融场景中,账户
- AI agent开发出办公AI小助手的学习方案和路线
云博士的AI课堂
大模型技术开发与实践大模型AIAgent人工智能自动化
一个从基础概念、关键技术栈到实际落地的AIAgent开发全流程学习路线和开发方法建议。此方案参考当前主流大模型(LLM)及相关工具链生态,总体目标是从零开始了解所需知识体系与技能,并能在实践中构建自动化的客服AI或者办公辅助类AI助手。学习与开发的总体思路明确目标场景与需求:在开始前,确定需要开发的AIAgent的功能点和使用场景。例如,客服AI需要具备回答客户常见问题、查询订单状态、转接人工客服
- MATLAB软件二次开发:MATLAB面向对象编程
kkchenjj
仿真模拟matlab开发语言工业软件工业软件二次开发
MATLAB软件二次开发:MATLAB面向对象编程绪论面向对象编程的基本概念面向对象编程(Object-OrientedProgramming,OOP)是一种编程范式,它将程序设计围绕“对象”进行。在OOP中,对象是数据和可以对这些数据执行的操作的封装。每个对象都是一个特定类的实例,类定义了对象的属性(数据成员)和方法(函数)。OOP的三大特性包括:封装:将对象的属性和方法封装在一起,隐藏对象的内
- 扣子工作流能实现哪些功能和单纯的提示词问大模型的区别
好的,我们来详细解释一下扣子工作流(KoFlow)的功能、优势以及与单纯使用提示词调用大模型的区别。核心概念:单纯提示词调用大模型:用户直接编写一段文本(提示词)发送给大模型,大模型根据这个提示词一次性生成回复。整个过程是“单次交互”。扣子工作流:用户构建一个可视化或代码化的流程。这个流程可以包含多个步骤,每个步骤可以执行不同的任务(调用大模型、调用API、执行代码、判断条件、循环等),步骤之间可
- 【开源分享】Conan:C/C++开发者的包管理神器
智驾
开源分享c++Conan包管理
文章目录一、现实中的依赖地狱二、Conan是什么?三、Conan的核心优势四、实际项目应用示例1.安装Conan2.创建项目结构3.编写conanfile.txt4.安装依赖5.CMake构建五、六大核心优势详解优势1:依赖隔离优势2:构建可重复性优势3:构建加速优势4:多编译器支持优势5:企业级私有仓库优势6:灵活的构建模式六、适用场景对比七、常见误区提醒八、企业级应用案例九、学习资源导航一、现
- 亚马逊广告进阶指南:什么时候应降低曝光
跨境小渊
人工智能
“如何判断广告曝光是否过度?“高ACOS但低转化时该怎么调整?”“新品推广应该优先保曝光还是控成本?”“自动广告跑出的词如何高效利用?”“预算有限时怎样避免广告浪费?”如果你也在纠结这些问题,今天的分享或许能给你一个新视角。曝光失控的底层逻辑亚马逊广告的核心矛盾永远是流量质量与成本的平衡。许多卖家陷入两难:盲目追求曝光可能导致ACOS飙升过度控制预算又会错失潜在订单传统人工优化的三大痛点:数据滞后
- PgSQL内核特性 | Brin索引
yzs87
搜索引擎数据库
PgSQL内核特性|Brin索引数据库在进行过滤扫描或者join时,如果该表特别大,那么就需要顺序扫描表的所有数据然后进行过滤,或者扫描所有数据进行join条件探测。这对IO的负载影响特别大,当在join时,比如HashJoin的外表,需要对每个数据都进行Hash表探测,进一步影响性能。现有列存比如Infobright、Parquet、hydra等都对存储进行了类似的改进,在每个block中增加了
- 打造世赛级信息安全实训室:一站式建设方案大揭秘
在当今数字化时代,信息安全已成为全球关注的焦点。随着信息技术的飞速发展,各类网络安全威胁日益复杂多样,对专业信息安全人才的需求也愈发迫切。世界职业院校技能大赛作为全球最高层级的职业技能赛事,其信息安全项目更是汇聚了各国顶尖的技能人才,展示着这一领域最前沿的技术与应用。打造一个达到世赛级别的信息安全实训室,无疑是培养高素质信息安全人才、提升国家网络安全防御能力的关键举措。以下将为您揭秘一站式建设世赛
- kotlin入门之泛型
易帜¤
kotlinandroid
【码上开学】Kotlin的泛型在学习kotlin泛型之前我们先来回顾一下关于Java的泛型基础吧。说道泛型,我们可能最常用的就是在三大集合中去使用。泛型将具体的类型泛化,编码的时候用符号来值代类型,在使用时再确定他的类型。因为泛型的存在,我们可以省去强制类型转化。泛型是跟类型相关的,那么是不是也能使用与类型的多态呢?场景一://多态,因为Button是TextView的子类,向上转型TextVie
- python三角网格代码_Python 实现 Delaunay Triangulation
weixin_39828457
python三角网格代码
DelaunayTriangulation是一种空间划分的方法,它能使得分割形成的三角形最小的角尽可能的大,关于DelaunayTriangulation的详细介绍,请参考这里,DelaunayTriangulation在很多领域都有应用,科学计算领域它是有限元和有限体积法划分网格的重要方法,除此之外在图像识别、视觉艺术等领域也有它的身影。贴一段有趣的油管视频,用DelaunayTriangula
- 博睿数据出席GOPS全球运维大会,深度解析如何让大模型真正“懂”运维!
运维
2025年6月27日-28日,第二十六届GOPS全球运维大会暨研运数智化技术峰会在北京盛大启幕。全球近千位行业专家齐聚一堂,围绕大模型、DevOps、SRE、可观测性等核心议题展开深度探讨。本届峰会专设可观测性、金融行业、SRE稳定性等特色专场,聚焦IT技术领域的最新发展,共探企业级最佳实践。作为国内应用性能管理及可观测性领域的领导者,博睿数据受邀出席本次大会。产品总监贺安辉亮相“可观测性专场”,
- 绩效系统的技术重构:用工程思维解决公平性与效率难题
c++前端
绩效系统的技术重构:用工程思维解决公平性与效率难题当你的绩效模块成为团队吐槽的“祖传屎山”,背后往往是技术债的集中爆发。本文从开发者视角拆解:如何用系统设计解决评分公平性、数据孤岛与流程低效三大顽疾。一、技术人眼中的绩效痛点graphTDA[绩效系统技术债]-->B[评分公平性]A-->C[数据整合]A-->D[流程效率]B-->B1(“案例:销售精英因黑盒评分离职”)C-->C1(“手动合并40
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key