05 mapreduce快速入门

统计HDFS/wordcount/input/a.txt文件中的每个单词出现的次数——wordcount

 

package cn.oracle.core;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 * KEYIN :是map task读取到的数据的key的类型,是一行的起始偏移量Long
 * VALUEIN:是map task读取到的数据的value的类型,是一行的内容String
 * 
 * KEYOUT:是用户的自定义map方法要返回的结果kv数据的key的类型,在wordcount逻辑中,我们需要返回的是单词String
 * VALUEOUT:是用户的自定义map方法要返回的结果kv数据的value的类型,在wordcount逻辑中,我们需要返回的是整数Integer
 * 
 * 
 * 但是,在mapreduce中,map产生的数据需要传输给reduce,需要进行序列化和反序列化,而jdk中的原生序列化机制产生的数据量比较冗余,就会导致数据在mapreduce运行过程中传输效率低下
 * 所以,hadoop专门设计了自己的序列化机制,那么,mapreduce中传输的数据类型就必须实现hadoop自己的序列化接口
 * 
 * hadoop为jdk中的常用基本类型Long String Integer Float等数据类型封住了自己的实现了hadoop序列化接口的类型:LongWritable,Text,IntWritable,FloatWritable
 * 
 * 
 * 
 * 
 * @author javaZhao
 *
 */
public class WordcountMapper extends Mapper{
    
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {

        // 切单词
        String line = value.toString();
        String[] words = line.split(" ");
        for(String word:words){
            context.write(new Text(word), new IntWritable(1));
            
        }
    }
}

 

package cn.oracle.core;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordcountReducer extends Reducer{
    
    
    @Override
    protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {
    
        
        int count = 0;
        
        Iterator iterator = values.iterator();
        while(iterator.hasNext()){
            
            IntWritable value = iterator.next();
            count += value.get();
        }
        
        
        context.write(key, new IntWritable(count));
        
    }
    
 
}

 

你可能感兴趣的:(05 mapreduce快速入门)