一、线程与run loop
1.1 线程任务的类型
再来说说线程。有些线程执行的任务是一条直线,起点到终点;而另一些线程要干的活则是一个圆,不断循环,直到通过某种方式将它终止。直线线程如简单的Hello World,运行打印完,它的生命周期便结束了,像昙花一现那样;圆类型的如操作系统,一直运行直到你关机。在IOS中,圆型的线程就是通过run loop不停的循环实现的。
1.2 线程与run loop的关系
Run loop,正如其名,loop表示某种循环,和run放在一起就表示一直在运行着的循环。实际上,run loop和线程是紧密相连的,可以这样说run loop是为了线程而生,没有线程,它就没有存在的必要。Run loops是线程的基础架构部分,Cocoa和CoreFundation都提供了run loop对象方便配置和管理线程的run loop(以下都已Cocoa为例)。每个线程,包括程序的主线程(main thread)都有与之相应的run loop对象。
1.2.1 主线程的run loop默认是启动的。
iOS的应用程序里面,程序启动后会有一个如下的main() 函数:
int main(int argc, char *argv[])
{
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([appDelegate class]));
}
}
重点是UIApplicationMain() 函数,这个方法会为main thread 设置一个NSRunLoop 对象,这就解释了本文开始说的为什么我们的应用可以在无人操作的时候休息,需要让它干活的时候又能立马响应。
1.2.2 对其它线程来说,run loop默认是没有启动的,如果你需要更多的线程交互则可以手动配置和启动,如果线程只是去执行一个长时间的已确定的任务则不需要。
1.2.3 在任何一个Cocoa程序的线程中,都可以通过:
NSRunLoop *runloop = [NSRunLoop currentRunLoop];
来获取到当前线程的run loop。
1.3 关于run loop的几点说明
1.3.1 Cocoa中的NSRunLoop类并不是线程安全的
我们不能再一个线程中去操作另外一个线程的run loop对象,那很可能会造成意想不到的后果。不过幸运的是CoreFundation中的不透明类CFRunLoopRef是线程安全的,而且两种类型的run loop完全可以混合使用。Cocoa中的NSRunLoop类可以通过实例方法:
- (CFRunLoopRef)getCFRunLoop;
获取对应的CFRunLoopRef类,来达到线程安全的目的。
1.3.2 Run loop的管理并不完全是自动的。
我们仍必须设计线程代码以在适当的时候启动run loop并正确响应输入事件,当然前提是线程中需要用到run loop。而且,我们还需要使用while/for语句来驱动run loop能够循环运行,下面的代码就成功驱动了一个run loop:
BOOL isRunning = NO;
do {
isRunning = [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode beforeDate:[NSDatedistantFuture]];
} while (isRunning);
1.3.3 Run loop同时也负责autorelease pool的创建和释放
在使用手动的内存管理方式的项目中,会经常用到很多自动释放的对象,如果这些对象不能够被即时释放掉,会造成内存占用量急剧增大。Run loop就为我们做了这样的工作,每当一个运行循环结束的时候,它都会释放一次autorelease pool,同时pool中的所有自动释放类型变量都会被释放掉。
1.3.4 Run loop的优点
一个run loop就是一个事件处理循环,用来不停的监听和处理输入事件并将其分配到对应的目标上进行处理。如果仅仅是想实现这个功能,你可能会想一个简单的while循环不就可以实现了吗,用得着费老大劲来做个那么复杂的机制?显然,苹果的架构设计师不是吃干饭的,你想到的他们早就想过了。
首先,NSRunLoop是一种更加高明的消息处理模式,他就高明在对消息处理过程进行了更好的抽象和封装,这样才能是的你不用处理一些很琐碎很低层次的具体消息的处理,在NSRunLoop中每一个消息就被打包在input source或者是timer source(见后文)中了。
其次,也是很重要的一点,使用run loop可以使你的线程在有工作的时候工作,没有工作的时候休眠,这可以大大节省系统资源。
--零--从程序启动开始到view显示:
start---->(加载framework,动态静态链接库,启动图片,Info.plist,pch等)---->main函数---->UIapplicationMain函数:
- 初始化UIApplication单例对象
- 初始化AppDelegate对象,并设为UIApplication对象的代理
- 检查Info.plist设置的xib文件是否有效,如果有则解冻Nib文件并设置outlets,创建显示key window、rootViewController、与rootViewController关联的根view(没有关联则看rootViewController同名的xib),否则launch之后由程序员手动加载。
- 建立一个主事件循环,其中包含UIApplication的Runloop来开始处理事件。
UIApplication:
1、通过window管理视图;
2、发送Runloop封装好的control消息给target;
3、处理URL,应用图标警告,联网状态,状态栏,远程事件等。
AppDelegate:
管理UIApplication生命周期和应用的五种状态(notRunning/inactive/active/background/suspend)。
Key Window:
1、显示view;
2、管理rootViewcontroller生命周期;
3、发送UIApplication传来的事件消息给view。
rootViewController:
1、管理view(view生命周期;view的数据源/代理;view与superView之间事件响应nextResponder的“备胎”);
2、界面跳转与传值;
3、状态栏,屏幕旋转。
view:
1、通过作为CALayer的代理,管理layer的渲染(顺序大概是先更新约束,再layout再display)和动画(默认layer的属性可动画,view默认禁止,在UIView的block分类方法里才打开动画)。layer是RGBA纹理,通过和mask位图(含alpha属性)关联将合成后的layer纹理填充在像素点内,GPU每1/60秒将计算出的纹理display在像素点中。
2、布局子控件(屏幕旋转或者子视图布局变动时,view会重新布局)。
3、事件响应:event和guesture。
插播控制器生命周期
runloop:
1、(要让马儿跑)通过do-while死循环让程序持续运行:接收用户输入,调度处理事件时间。
2、(要让马儿少吃草)通过mach_msg()让runloop没事时进入trap状态,节省CPU资源。
关于程序启动原理以及各个控件的资料,已经有太多资料介绍,平时我们也经常接触经常用到,但关于Runloop的资料,官方文档总是太过简练,网上资源说法也不太统一,只能从CFRunLooPRef开源代码着手,试着学习总结下。(NSRunloop是对CFRunloopRef的面向对象封装,但是不是线程安全)。
--一--Runloop
1、与线程和自动释放池相关:
2、CFRunLoopRef构造:数据结构;创建与退出;mode切换和item依赖;Runloop启动
- CFRunLoopModeRef:数据结构(与CFRunLoopRef放一起了);创建;类型;
modeItems:- CFRunLoopSourceRef:数据结构(source0/source1);
- source0 :
- source1 :
- CFRunLoopTimerRef:数据结构;创建与生效;相关类型(GCD的timer与CADisplayLink)
- CFRunLoopObserverRef:数据结构;创建与添加;监听的状态;
3、Runloop内部逻辑:关键在两个判断点(是否睡觉,是否退出)
- 代码实现:
- 函数作用栈显示:
4、Runloop本质:mach port和mach_msg()。
5、如何处理事件:
- 界面刷新:
- 手势识别:
- GCD任务:
- timer:(与CADisplayLink)
- 网络请求:
6、应用:
- 滑动与图片刷新;
- 常驻子线程,保持子线程一直处理事件
Runloop
1、与线程和自动释放池相关:
Runloop的寄生于线程:一个线程只能有唯一对应的runloop;但这个根runloop里可以嵌套子runloops;
自动释放池寄生于Runloop:程序启动后,主线程注册了两个Observer监听runloop的进出与睡觉。一个最高优先级OB监测Entry状态;一个最低优先级OB监听BeforeWaiting状态和Exit状态。
线程(创建)-->runloop将进入-->最高优先级OB创建释放池-->runloop将睡-->最低优先级OB销毁旧池创建新池-->runloop将退出-->最低优先级OB销毁新池-->线程(销毁)
2、CFRunLoopRef构造:
数据结构:
// runloop数据结构
struct __CFRunLoopMode {
CFStringRef _name; // Mode名字,
CFMutableSetRef _sources0; // Set
CFMutableSetRef _sources1; // Set
CFMutableArrayRef _observers; // Array
CFMutableArrayRef _timers; // Array
...
};
// mode数据结构
struct __CFRunLoop {
CFMutableSetRef _commonModes; // Set
CFMutableSetRef _commonModeItems; // Set
a 主线程的runloop自动创建,子线程的runloop默认不创建(在子线程中调用NSRunLoop *runloop = [NSRunLoop currentRunLoop];
获取RunLoop对象的时候,就会创建RunLoop);
b runloop退出的条件:app退出;线程关闭;设置最大时间到期;modeItem为空;
c 同一时间一个runloop只能在一个mode,切换mode只能退出runloop,再重进指定mode(隔离modeItems使之互不干扰);
d 一个item可以加到不同mode;一个mode被标记到commonModes里(这样runloop不用切换mode)。
启动Runloop:
// 用DefaultMode启动
void CFRunLoopRun(void) {
CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
}
// 用指定的Mode启动,允许设置RunLoop最大时间(假无限循环),执行完毕是否退出
int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}
CFRunLoopModeRef:
数据结构(见上);
创建添加:runloop自动创建对应的mode;mode只能添加不能删除
// 添加mode
CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
类型:
kCFRunLoopDefaultMode: 默认 mode,通常主线程在这个 Mode 下运行。
UITrackingRunLoopMode: 追踪mode,保证Scrollview滑动顺畅不受其他 mode 影响。
UIInitializationRunLoopMode: 启动程序后的过渡mode,启动完成后就不再使用。
4: GSEventReceiveRunLoopMode: Graphic相关事件的mode,通常用不到。
5: kCFRunLoopCommonModes: 占位mode,作为标记DefaultMode和CommonMode用。
modeItems:
// 添加移除item的函数(参数:添加/移除哪个item到哪个runloop的哪个mode下)
CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef modeName);
CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef modeName);
CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
A-- CFRunLoopSourceRef:事件来源
按照官方文档CFRunLoopSourceRef为3类,但数据结构只有两类(???)
Port-Based Sources:与内核端口相关
Custom Input Sources:与自定义source相关
Cocoa Perform Selector Sources:与PerformSEL方法相关)
数据结构(source0/source1);
// source0 (manual): order(优先级),callout(回调函数)
CFRunLoopSource {order =..., {callout =... }}
// source1 (mach port):order(优先级),port:(端口), callout(回调函数)
CFRunLoopSource {order = ..., {port = ..., callout =...}
source0:event事件,只含有回调,需要标记待处理(signal),然后手动将runloop唤醒(wakeup);
source1 :包含一个 mach_port 和一个回调,被用于通过内核和其他线程发送的消息,能主动唤醒runloop。
B-- CFRunLoopTimerRef:系统内“定时闹钟”
NSTimer和performSEL方法实际上是对CFRunloopTimerRef的封装;runloop启动时设置的最大超时时间实际上是GCD的dispatch_source_t类型。
数据结构:
// Timer:interval:(闹钟间隔), tolerance:(延期时间容忍度),callout(回调函数)
CFRunLoopTimer {firing =..., interval = ...,tolerance = ...,next fire date = ...,callout = ...}
创建与生效;
//NSTimer:
// 创建一个定时器(需要手动加到runloop的mode中)
- (NSTimer *)timerWithTimeInterval:(NSTimeInterval)ti invocation:(NSInvocation *)invocation repeats:(BOOL)yesOrNo;
// 默认已经添加到主线程的runLoop的DefaultMode中
- (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)ti invocation:(NSInvocation *)invocation repeats:(BOOL)yesOrNo;
// performSEL方法
// 内部会创建一个Timer到当前线程的runloop中(如果当前线程没runloop则方法无效;performSelector:onThread: 方法放到指定线程runloop中)
- (void)performSelector:(SEL)aSelector withObject:(id)anArgument afterDelay:(NSTimeInterval)delay
相关类型(GCD的timer与CADisplayLink)
GCD的timer:
dispatch_source_t 类型,可以精确的参数,不用以来runloop和mode,性能消耗更小。
dispatch_source_set_timer(dispatch_source_t source, // 定时器对象
dispatch_time_t start, // 定时器开始执行的时间
uint64_t interval, // 定时器的间隔时间
uint64_t leeway // 定时器的精度
);
CADisplayLink :
Timer的tolerance表示最大延期时间,如果因为阻塞错过了这个时间精度,这个时间点的回调也会跳过去,不会延后执行。
CADisplayLink 是一个和屏幕刷新率一致的定时器,如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer 相似,只是没有tolerance容忍时间),造成界面卡顿的感觉。
C--CFRunLoopObserverRef:监听runloop状态,接收回调信息(常见于自动释放池创建销毁)
数据结构:
// Observer:order(优先级),ativity(监听状态),callout(回调函数)
CFRunLoopObserver {order = ..., activities = ..., callout = ...}
创建与添加;
// 第一个参数用于分配该observer对象的内存空间
// 第二个参数用以设置该observer监听什么状态
// 第三个参数用于标识该observer是在第一次进入run loop时执行还是每次进入run loop处理时均执行
// 第四个参数用于设置该observer的优先级,一般为0
// 第五个参数用于设置该observer的回调函数
// 第六个参数observer的运行状态
CFRunLoopObserverCreateWithHandler(CFAllocatorGetDefault(), kCFRunLoopAllActivities, YES, 0, ^(CFRunLoopObserverRef observer, CFRunLoopActivity activity) {
// 执行代码
}
监听的状态;
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0), // 即将进入Loop
kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理 Timer
kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
kCFRunLoopAfterWaiting = (1UL << 6), // 刚从休眠中唤醒
kCFRunLoopExit = (1UL << 7), // 即将退出Loop
};
3、Runloop内部逻辑:关键在两个判断点(是否睡觉,是否退出)
代码实现:
// RunLoop的实现
int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
// 0.1 根据modeName找到对应mode
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
// 0.2 如果mode里没有source/timer/observer, 直接返回。
if (__CFRunLoopModeIsEmpty(currentMode)) return;
// 1.1 通知 Observers: RunLoop 即将进入 loop。---(OB会创建释放池)
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
// 1.2 内部函数,进入loop
__CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
Boolean sourceHandledThisLoop = NO;
int retVal = 0;
do {
// 2.1 通知 Observers: RunLoop 即将触发 Timer 回调。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
// 2.2 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
// 执行被加入的block
__CFRunLoopDoBlocks(runloop, currentMode);
// 2.3 RunLoop 触发 Source0 (非port) 回调。
sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
// 执行被加入的block
__CFRunLoopDoBlocks(runloop, currentMode);
// 2.4 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
if (__Source0DidDispatchPortLastTime) {
Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
if (hasMsg) goto handle_msg;
}
// 3.1 如果没有待处理消息,通知 Observers: RunLoop 的线程即将进入休眠(sleep)。--- (OB会销毁释放池并建立新释放池)
if (!sourceHandledThisLoop) {
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
}
// 3.2. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
// - 一个基于 port 的Source1 的事件。
// - 一个 Timer 到时间了
// - RunLoop 启动时设置的最大超时时间到了
// - 被手动唤醒
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
}
// 3.3. 被唤醒,通知 Observers: RunLoop 的线程刚刚被唤醒了。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
// 4.0 处理消息。
handle_msg:
// 4.1 如果消息是Timer类型,触发这个Timer的回调。
if (msg_is_timer) {
__CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
}
// 4.2 如果消息是dispatch到main_queue的block,执行block。
else if (msg_is_dispatch) {
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
}
// 4.3 如果消息是Source1类型,处理这个事件
else {
CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
if (sourceHandledThisLoop) {
mach_msg(reply, MACH_SEND_MSG, reply);
}
}
// 执行加入到Loop的block
__CFRunLoopDoBlocks(runloop, currentMode);
// 5.1 如果处理事件完毕,启动Runloop时设置参数为一次性执行,设置while参数退出Runloop
if (sourceHandledThisLoop && stopAfterHandle) {
retVal = kCFRunLoopRunHandledSource;
// 5.2 如果启动Runloop时设置的最大运转时间到期,设置while参数退出Runloop
} else if (timeout) {
retVal = kCFRunLoopRunTimedOut;
// 5.3 如果启动Runloop被外部调用强制停止,设置while参数退出Runloop
} else if (__CFRunLoopIsStopped(runloop)) {
retVal = kCFRunLoopRunStopped;
// 5.4 如果启动Runloop的modeItems为空,设置while参数退出Runloop
} else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
retVal = kCFRunLoopRunFinished;
}
// 5.5 如果没超时,mode里没空,loop也没被停止,那继续loop,回到第2步循环。
} while (retVal == 0);
}
// 6. 如果第6步判断后loop退出,通知 Observers: RunLoop 退出。--- (OB会销毁新释放池)
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
}
函数作用栈显示:
{
// 1.1 通知Observers,即将进入RunLoop
// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();
CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION(kCFRunLoopEntry);
do {
// 2.1 通知 Observers: 即将触发 Timer 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);
// 2.2 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);
// 执行Block
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
// 2.3 触发 Source0 (非基于port的) 回调。
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);
// 执行Block
__CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
// 3.1 通知Observers,即将进入休眠
// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);
// 3.2 sleep to wait msg.
mach_msg() -> mach_msg_trap();
// 3.3 通知Observers,线程被唤醒
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);
// 4.1 如果是被Timer唤醒的,回调Timer
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);
// 4.2 如果是被dispatch唤醒的,执行所有调用 dispatch_async 等方法放入main queue 的 block
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);
// 4.3 如果如果Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);
// 5. 退出判断函数调用栈无显示
} while (...);
// 6. 通知Observers,即将退出RunLoop
// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);
}
一步一步写具体的实现逻辑过于繁琐不便理解,按Runloop状态大致分为:
1- Entry:通知OB(创建pool);
2- 执行阶段:按顺序通知OB并执行timer,source0;若有source1执行source1;
3- 休眠阶段:利用mach_msg判断进入休眠,通知OB(pool的销毁重建);被消息唤醒通知OB;
4- 执行阶段:按消息类型处理事件;
5- 判断退出条件:如果符合退出条件(一次性执行,超时,强制停止,modeItem为空)则退出,否则回到第2阶段;
6- Exit:通知OB(销毁pool)。
4、Runloop本质:mach port和mach_msg()。
Mach是XNU的内核,进程、线程和虚拟内存等对象通过端口发消息进行通信,Runloop通过mach_msg()函数发送消息,如果没有port 消息,内核会将线程置于等待状态 mach_msg_trap() 。如果有消息,判断消息类型处理事件,并通过modeItem的callback回调(处理事件的具体执行是在DoBlock里还是在回调里目前我还不太明白???)。
Runloop有两个关键判断点,一个是通过msg决定Runloop是否等待,一个是通过判断退出条件来决定Runloop是否循环。
5、如何处理事件:
界面刷新:
当UI改变( Frame变化、 UIView/CALayer 的继承结构变化等)时,或手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理。
苹果注册了一个用来监听BeforeWaiting和Exit的Observer,在它的回调函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。
事件响应:
当一个硬件事件(触摸/锁屏/摇晃/加速等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收, 随后由mach port 转发给需要的App进程。
苹果注册了一个 Source1 (基于 mach port 的) 来接收系统事件,通过回调函数触发Sourece0(所以UIEvent实际上是基于Source0的),调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。
_UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。
手势识别:
如果上一步的 _UIApplicationHandleEventQueue() 识别到是一个guesture手势,会调用Cancel方法将当前的touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。
苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,其回调函数为 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。
当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。
GCD任务:
当调用 dispatch_async(dispatch_get_main_queue(), block) 时,libDispatch 会向主线程的 RunLoop 发送消息,RunLoop会被唤醒,并从消息中取得这个 block,并在回调里执行这个 block。Runloop只处理主线程的block,dispatch 到其他线程仍然是由 libDispatch 处理的。
timer:(见上modeItem部分)
网络请求:
关于网络请求的接口:最底层是Cfsocket层,然后是CFNetwork将其封装,然后是NSURLConnection对CFNetwork进行面向对象的封装,NSURLsession 是 iOS7 中新增的接口,也用到NSURLConnection的loader线程。所以还是以NSURLConnection为例。
当开始网络传输时,NSURLConnection 创建了两个新线程:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 连接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并通过之前添加的 Source0 通知到上层的 Delegate。
http://s1.knowsky.com/20151016/wieofwzxax056.png
6、应用:
滑动与图片刷新;
当tableview的cell上有需要从网络获取的图片的时候,滚动tableView,异步线程会去加载图片,加载完成后主线程就会设置cell的图片,但是会造成卡顿。可以让设置图片的任务在CFRunLoopDefaultMode下进行,当滚动tableView的时候,RunLoop是在 UITrackingRunLoopMode 下进行,不去设置图片,而是当停止的时候,再去设置图片。
- (void)viewDidLoad {
[super viewDidLoad];
// 只在NSDefaultRunLoopMode下执行(刷新图片)
[self.myImageView performSelector:@selector(setImage:) withObject:[UIImage imageNamed:@""] afterDelay:ti inModes:@[NSDefaultRunLoopMode]];
}
常驻子线程,保持子线程一直处理事件
为了保证线程长期运转,可以在子线程中加入RunLoop,并且给Runloop设置item,防止Runloop自动退出。
(void)networkRequestThreadEntryPoint:(id)__unused object {
@autoreleasepool {
[[NSThread currentThread] setName:@"AFNetworking"];
NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
[runLoop addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
[runLoop run];
}
}(NSThread *)networkRequestThread {
static NSThread *_networkRequestThread = nil;
static dispatch_once_t oncePredicate;
dispatch_once(&oncePredicate, ^{
_networkRequestThread = [[NSThread alloc] initWithTarget:self selector:@selector(networkRequestThreadEntryPoint:) object:nil];
[_networkRequestThread start];
});
return _networkRequestThread;
}
- (void)start {
[self.lock lock];
if ([self isCancelled]) {
[self performSelector:@selector(cancelConnection) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
} else if ([self isReady]) {
self.state = AFOperationExecutingState;
[self performSelector:@selector(operationDidStart) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
[self.lock unlock];
} }