一.数据分析的步骤:
1.查看数据并提出问题
2.数据清洗
3.代码编写,提取出结果数据,并分析是否有异常数据,修改代码
4.根据数据选择合适的图表进行展示
5.根据图表小组讨论交流获得最终的结果
二.环境与原始数据准备
安装Anaconda2版本,同时更新软件包更新最新版本 conda upgrade --all
下载first.zip文件,解压
里面有3张csv文件分别是enrollments.csv,daily_engagements.csv,project_submission.csv和一个ipython的notebook
启动cmd 切换到解压之后的文件 输入 jupyter notebook 启动ipython笔记本
三.分析数据
1.从csv加载数据
import unicodecsv def readcsv(filename): with open(filename,'rb') as f: #以字典的形式存放每一行数据 reader = unicodecsv.DictReader(f) return list(reader)
## 从 daily_engagement.csv 和 project_submissions.csv 载入数据并存 ## 储至下面的变量中,然后检查每张表的第1行。 daily_engagement = readcsv('daily-engagement.csv') project_submissions = readcsv('project-submissions.csv') enrollments = readcsv('enrollments.csv') print daily_engagement[0] print project_submissions[0] print enrollments[0]
2.修正数据类型
from datetime import datetime as dt # 将字符串格式的时间转为 Python datetime 类型的时间。 # 如果没有时间字符串传入,返回 None def parse_date(date): if date == '': return None else: return dt.strptime(date, '%Y-%m-%d') # 将可能是空字符串或字符串类型的数据转为 整型 或 None。 def parse_maybe_int(i): if i == '': return None else: return int(i)
# 清理 enrollments 表格中的数据类型(取消的日期,参加日期,退出的天数,是否取消,是否是Udacity测试账号) for enrollment in enrollments: enrollment['cancel_date'] = parse_date(enrollment['cancel_date']) enrollment['join_date'] = parse_date(enrollment['join_date']) enrollment['days_to_cancel'] = parse_maybe_int(enrollment['days_to_cancel']) enrollment['is_canceled'] = enrollment['is_canceled'] == 'True' enrollment['is_udacity'] = enrollment['is_udacity'] == 'True' enrollments[0] # 清理 engagement 的数据类型(时间,课程数量,课程完成数量,项目完成情况,共花费多少时间) for engagement_record in daily_engagement: engagement_record['utc_date'] = parse_date(engagement_record['utc_date']) engagement_record['num_courses_visited'] = int(float(engagement_record['num_courses_visited'])) engagement_record['lessons_completed'] = int(float(engagement_record['lessons_completed'])) engagement_record['projects_completed'] = int(float(engagement_record['projects_completed'])) engagement_record['total_minutes_visited'] = float(engagement_record['total_minutes_visited']) daily_engagement[0] # 清理 submissions 的数据类型(项目创建的时间,完成的时间) for submission in project_submissions: submission['creation_date'] = parse_date(submission['creation_date']) submission['completion_date'] = parse_date(submission['completion_date']) project_submissions[0]
3.修改数据中的格式问题
## 将 daily_engagement 表中的 "acct" 重命名为 ”account_key" for engagement_record in daily_engagement: engagement_record['account_key'] = engagement_record['acct'] del [engagement_record['acct']]
4.探索数据
## 计算每张表中的总行数,和独立学生(拥有独立的 account keys)的数量 def unique_student_data(data): unique_data = set() for data_point in data: unique_data.add(data_point['account_key']) return unique_data len(enrollments) unique_enrolled_students = unique_student_data(enrollments) len(unique_enrolled_students) len(daily_engagement) unique_daily_engagement = unique_student_data(daily_engagement) len(unique_daily_engagement) len(project_submissions) unique_project_submissions = unique_student_data(project_submissions) len(unique_project_submissions)
5.找出问题数据
## 计算出有问题的数据点条数(在 enrollments 中存在,但在 engagement 表中缺失) num_problem_students = 0 for enrollment in enrollments: if enrollment['account_key'] not in unique_daily_engagement and enrollment['join_date'] != enrollment['cancel_date']: num_problem_students +=1 print enrollment print num_problem_students
6.追踪剩余的问题(移除数据集的测试账号)
# 为所有 Udacity 测试帐号建立一组 set udacity_test_account = set() for enrollment in enrollments: if enrollment['is_udacity']: udacity_test_account.add(enrollment['account_key']) len(udacity_test_account) # 通过 account_key 删除所有 Udacity 的测试帐号 def remove_udacity_account(data): non_udacity_data = [] for data_point in data: if data_point['account_key'] not in udacity_test_account: non_udacity_data.append(data_point) return non_udacity_data # 从3张表中移除所有 Udacity 的测试帐号 non_udacity_enrollments = remove_udacity_account(enrollments) non_udacity_engagement = remove_udacity_account(daily_engagement) non_udacity_submissions = remove_udacity_account(project_submissions)
#创建一个叫 paid_students 的字典,并在字典中存储所有还没有取消或者注册时间超过7天的学生 paid_students = {} for enrollment in non_udacity_enrollments:
#如果没有取消并且退课的期限已经超过,就记录学生的key和报名时间 if not enrollment['is_canceled'] or enrollment['days_to_cancel'] > 7: account_key = enrollment['account_key'] enrollment_date = enrollment['join_date']
#如果account_key不在已缴费的记录中,则将学生记录添加进paid_student中 if account_key not in paid_students or enrollment_date > paid_students[account_key]: paid_students[account_key] = enrollment_date len(paid_students)#获取了所有已入学的学生记录
7.获取第一周就已经付费报名的学生
#计算时间差,一周以内,按天计算
def within_one_week(join_date ,engagement_date): time_delta = join_date - enrollment_date return time_delta.days >= 0 and time_delta.days < 7
#存放已报名的用户 def remove_free_trial_cancels(data): new_data = [] for data_point in data: if data_point['account_key'] in paid_students: new_data.append(data_point) return new_data paid_enrollment = remove_free_trial_cancels(non_udacity_enrollments) paid_engagement = remove_free_trial_cancels(non_udacity_engagement) paid_project_missions = remove_free_trial_cancels(non_udacity_submissions) print len(paid_enrollment) print len(paid_engagement) print len(paid_project_missions)
## 创建一个 engagement 记录的列表,该列表只包括付费学生以及加入的前7天的学生的记录
## 输入符合要求的行数 paid_engagement_in_first_week = [] for engagement_record in paid_engagement: join_date = paid_students[engagement_record['account_key']] engagement_record_date = engagement_record['utc_date'] if within_one_week(join_date,engagement_record_date): paid_engagement_in_first_week.append(engagement_record) len(paid_engagement_in_first_week)
from collections import defaultdict import numpy as np #创建基于 student 对 engagement 进行分组的字典,字典的键为帐号(account key),值为包含互动记录的列表 def group_data(data,key_name): grouped_data = defaultdict(list) for data_point in data: key = data_point[key_name] grouped_data[key].append(data_point) return grouped_data # 创建一个包含学生在第1周在教室所花总时间和字典。键为帐号(account key),值为数字(所花总时间) def sum_grouped_items(grouped_data,field_name): sumed_data = {} for key,data_points in grouped_data.items(): total = 0 for data_point in data_points: total += data_point[field_name] sumed_data[key] = total return sumed_data # 汇总和描述关于教室所花时间的数据 def describe_data(data): print 'Mean:', np.mean(data) print 'Standard deviation:', np.std(data) print 'Minimum:', np.min(data) print 'Maximum:', np.max(data)
8.获取学习时间最长的学生和时间
total_minutes_by_account = sum_grouped_items(engagement_by_account,'total_minutes_visited') student_with_max_minutes = None max_minutes = 0 for student,total_nums in total_minutes_by_account.items(): if total_nums > max_minutes: max_minutes = total_nums student_with_max_minutes = student print max_minutes for engagement_record in paid_engagement_in_first_week: if engagement_record['account_key'] == student: print engagement_record
9.找出第一周的访问数
## 找出第1周学生访问教室天数的平均值、标准差、最小值、最大值。 for engagement_record in paid_engagement: if engagement_record['num_courses_visited'] > 0: engagement_record['has_visited'] = 1 else: engagement_record['has_visited'] = 0 days_visited_by_account = sum_grouped_items(engagement_by_account,'has_visited') describe_data(days_visited_by_account.values())
10.区分项目通过的学生
## 创建两个付费学生第1周的互动数据列表(engagement)。第1个包含通过项目的学生,第2个包含没通过项目的学生。 subway_project_lesson_keys = ['746169184', '3176718735']
#定义存放通过项目的学员的key pass_subway_project = set() for submission in paid_project_missions: project = submission['lesson_key'] rating = submission['assigned_rating']
#如果等级是passed和distinction加入到pass_subway_project集合中 if project in subway_project_lesson_keys and (rating == 'PASSED' or rating == 'DISTINCTION'): pass_subway_project.add(submission['account_key']) passing_engagement = [] #存放通过项目的学生 non_passing_engagement =[] #存放没有通过项目的学生 for engagement_record in paid_engagement_in_first_week: if engagement_record['account_key'] in pass_subway_project: passing_engagement.append(engagement_record) else: non_passing_engagement.append(engagement_record) print len(passing_engagement) print len(non_passing_engagement)
11.对比两组学生的数据
## 计算你所感兴趣的数据指标,并分析通过项目和没有通过项目的两组学生有何异同。 ## 你可以从我们之前使用过的数据指标开始(教室的访问时间、课程完成数、访问天数)。 passing_engagement_by_account = group_data(passing_engagement,'account_key') non_passing_engagement_by_account = group_data(non_passing_engagement,'account_key') print 'non-passing students' non_passing_minute = sum_grouped_items(non_passing_engagement_by_account,'total_minutes_visited') describe_data(non_passing_minute.values()) print 'passing students' passing_minute = sum_grouped_items(passing_engagement_by_account,'total_minutes_visited') describe_data(passing_minute.values()) print 'non-passing lessons' non_passing_lessons = sum_grouped_items(non_passing_engagement_by_account,'lessons_completed') describe_data(non_passing_lessons.values()) print 'passing lessons' passing_lessons = sum_grouped_items(passing_engagement_by_account,'lessons_completed') describe_data(passing_lessons.values()) print 'non-passing visited' non_passing_visited = sum_grouped_items(non_passing_engagement_by_account,'has_visited') describe_data(non_passing_visited.values()) print 'passing visited' passing_visited = sum_grouped_items(passing_engagement_by_account,'has_visited') describe_data(passing_visited.values())
12.绘制直方图
%pylab inline import matplotlib.pyplot as plt import numpy as np def describe_data(data): print 'Mean:', np.mean(data) print 'Standard deviation:', np.std(data) print 'Minimum:', np.min(data) print 'Maximum:', np.max(data) plt.hist(data) describe_data(passing_minute.values()) describe_data(non_passing_minute.values())
13.改进图表并分析
## 至少改进一幅之前的可视化图表,尝试导入 seaborn 库使你的图表看起来更美观。 ## 加入轴标签及表头,并修改一个或多个 hist() 内的变量。 %pylab inline import seaborn as sns sns.set(color_codes=True) plt.hist(non_passing_minute.values(),bins=8) plt.xlabel('mean of minut') plt.title('Distribution of classroom visits in the first week ' + 'for students who do not pass the subway project') plt.hist(passing_minute.values(),bins=8) plt.xlabel('mean of minut') plt.title('Distribution of classroom visits in the first week ' + 'for students who do not pass the subway project')