尝试使用了pytorch,相比其他深度学习框架,pytorch显得简洁易懂。花时间读了部分源码,主要结合简单例子带着问题阅读,不涉及源码中C拓展库的实现。
一个简单例子
实现单层softmax二分类,输入特征维度为4,输出为2,经过softmax函数得出输入的类别概率。代码示意:定义网络结构;使用SGD优化;迭代一次,随机初始化三个样例,每个样例四维特征,target分别为1,0,1;前向传播,使用交叉熵计算loss;反向传播,最后由优化算法更新权重,完成一次迭代。
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.linear = nn.Linear(4, 2)
def forward(self, input):
out = F.softmax(self.linear(input))
return out
net = Net()
sgd = torch.optim.SGD(net.parameters(), lr=0.001)
for epoch in range(1):
features = torch.autograd.Variable(torch.randn(3, 4), requires_grad=True)
target = torch.autograd.Variable(torch.LongTensor([1, 0, 1]))
sgd.zero_grad()
out = net(features)
loss = F.cross_entropy(out, target)
loss.backward()
sgd.step()
从上面的例子,带着下面的问题阅读源码:
- pytorch的主要概念:Tensor、autograd、Variable、Function、Parameter、Module(Layers)、Optimizer;
- 自定义Module如何组织网络结构和网络参数;
- 前向传播、反向传播实现流程
- 优化算法类如何实现,如何和自定义Module联系并更新参数。
pytorch的主要概念
pytorch的主要概念官网有很人性化的教程Deep Learning with PyTorch: A 60 Minute Blitz, 这里简单概括这些概念:
Tensor
类似numpy的ndarrays,强化了可进行GPU计算的特性,由C拓展模块实现。如上面的torch.randn(3, 4) 返回一个3*4的Tensor。和numpy一样,也有一系列的Operation,如
x = torch.rand(5, 3)
y = torch.rand(5, 3)
print x + y
print torch.add(x, y)
print x.add_(y)
Varaiable与autograd
Variable封装了Tensor,包括了几乎所有的Tensor可以使用的Operation方法,主要使用在自动求导(autograd),Variable类继承_C._VariableBase,由C拓展类定义实现。
Variable是autograd的计算单元,Variable通过Function组织成函数表达式(计算图):
- data 为其封装的tensor值
- grad 为其求导后的值
- creator 为创建该Variable的Function,实现中grad_fn属性则指向该Function。
如:
import torch
from torch.autograd import Variable
x = Variable(torch.ones(2, 2), requires_grad=True)
y = x + 2
print y.grad_fn
print "before backward: ", x.grad
y.backward()
print "after backward: ", x.grad
输出结果:
before backward: None
after backward: Variable containing:
1
[torch.FloatTensor of size 1x1]
调用y的backward方法,则会对创建y的Function计算图中所有requires_grad=True的Variable求导(这里的x)。例子中显然dy/dx = 1。
Parameter
Parameter 为Variable的一个子类,后面还会涉及,大概两点区别:
- 作为Module参数会被自动加入到该Module的参数列表中;
- 不能被volatile, 默认require gradient。
Module
Module为所有神经网络模块的父类,如开始的例子,Net继承该类,____init____中指定网络结构中的模块,并重写forward方法实现前向传播得到指定输入的输出值,以此进行后面loss的计算和反向传播。
Optimizer
Optimizer是所有优化算法的父类(SGD、Adam、...),____init____中传入网络的parameters, 子类实现父类step方法,完成对parameters的更新。
自定义Module
该部分说明自定义的Module是如何组织定义在构造函数中的子Module,以及自定义的parameters的保存形式,eg:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.linear = nn.Linear(4, 2)
def forward(self, input):
out = F.softmax(self.linear(input))
return out
首先看构造函数,Module的构造函数初始化了Module的基本属性,这里关注_parameters和_modules,两个属性初始化为OrderedDict(),pytorch重写的有序字典类型。_parameters保存网络的所有参数,_modules保存当前Module的子Module。
module.py:
class Module(object):
def __init__(self):
self._parameters = OrderedDict()
self._modules = OrderedDict()
...
下面来看自定义Net类中self.linear = nn.Linear(4, 2)语句和_modules、_parameters如何产生联系,或者self.linear及其参数如何被添加到_modules、_parameters字典中。答案在Module的____setattr____方法,该Python内建方法会在类的属性被赋值时调用。
module.py:
def __setattr__(self, name, value):
def remove_from(*dicts):
for d in dicts:
if name in d:
del d[name]
params = self.__dict__.get('_parameters')
if isinstance(value, Parameter): # ----------- <1>
if params is None:
raise AttributeError(
"cannot assign parameters before Module.__init__() call")
remove_from(self.__dict__, self._buffers, self._modules)
self.register_parameter(name, value)
elif params is not None and name in params:
if value is not None:
raise TypeError("cannot assign '{}' as parameter '{}' "
"(torch.nn.Parameter or None expected)"
.format(torch.typename(value), name))
self.register_parameter(name, value)
else:
modules = self.__dict__.get('_modules')
if isinstance(value, Module):# ----------- <2>
if modules is None:
raise AttributeError(
"cannot assign module before Module.__init__() call")
remove_from(self.__dict__, self._parameters, self._buffers)
modules[name] = value
elif modules is not None and name in modules:
if value is not None:
raise TypeError("cannot assign '{}' as child module '{}' "
"(torch.nn.Module or None expected)"
.format(torch.typename(value), name))
modules[name] = value
......
调用self.linear = nn.Linear(4, 2)时,父类____setattr____被调用,参数name为“linear”, value为nn.Linear(4, 2),内建的Linear类同样是Module的子类。所以<2>中的判断为真,接着modules[name] = value,该linear被加入_modules字典。
同样自定义Net类的参数即为其子模块Linear的参数,下面看Linear的实现:
linear.py:
class Linear(Module):
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
return F.linear(input, self.weight, self.bias)
同样继承Module类,____init____中参数为输入输出维度,是否需要bias参数。在self.weight = Parameter(torch.Tensor(out_features, in_features))的初始化时,同样会调用父类Module的____setattr____, name为“weight”,value为Parameter,此时<1>判断为真,调用self.register_parameter(name, value),该方法中对参数进行合法性校验后放入self._parameters字典中。
Linear在reset_parameters方法对权重进行了初始化。
最终可以得出结论自定义的Module以树的形式组织子Module,子Module及其参数以字典的方式保存。
前向传播、反向传播
前向传播
例子中out = net(features)实现了网络的前向传播,该语句会调用Module类的forward方法,该方法被继承父类的子类实现。net(features)使用对象作为函数调用,会调用Python内建的____call____方法,Module重写了该方法。
module.py:
def __call__(self, *input, **kwargs):
for hook in self._forward_pre_hooks.values():
hook(self, input)
result = self.forward(*input, **kwargs)
for hook in self._forward_hooks.values():
hook_result = hook(self, input, result)
if hook_result is not None:
raise RuntimeError(
"forward hooks should never return any values, but '{}'"
"didn't return None".format(hook))
if len(self._backward_hooks) > 0:
var = result
while not isinstance(var, Variable):
var = var[0]
grad_fn = var.grad_fn
if grad_fn is not None:
for hook in self._backward_hooks.values():
wrapper = functools.partial(hook, self)
functools.update_wrapper(wrapper, hook)
grad_fn.register_hook(wrapper)
return result
____call____方法中调用result = self.forward(*input, **kwargs)前后会查看有无hook函数需要调用(预处理和后处理)。
例子中Net的forward方法中out = F.softmax(self.linear(input)),同样会调用self.linear的forward方法F.linear(input, self.weight, self.bias)进行矩阵运算(仿射变换)。
functional.py:
def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:
# fused op is marginally faster
return torch.addmm(bias, input, weight.t())
output = input.matmul(weight.t())
if bias is not None:
output += bias
return output
最终经过F.softmax,得到前向输出结果。F.softmax和F.linear类似前面说到的Function(Parameters的表达式或计算图)。
反向传播
得到前向传播结果后,计算loss = F.cross_entropy(out, target),接下来反向传播求导数d(loss)/d(weight)和d(loss)/d(bias):
loss.backward()
backward()方法同样底层由C拓展,这里暂不深入,调用该方法后,loss计算图中的所有Variable(这里linear的weight和bias)的grad被求出。
Optimizer参数更新
在计算出参数的grad后,需要根据优化算法对参数进行更新,不同的优化算法有不同的更新策略。
optimizer.py:
class Optimizer(object):
def __init__(self, params, defaults):
if isinstance(params, Variable) or torch.is_tensor(params):
raise TypeError("params argument given to the optimizer should be "
"an iterable of Variables or dicts, but got " +
torch.typename(params))
self.state = defaultdict(dict)
self.param_groups = list(params)
......
def zero_grad(self):
"""Clears the gradients of all optimized :class:`Variable` s."""
for group in self.param_groups:
for p in group['params']:
if p.grad is not None:
if p.grad.volatile:
p.grad.data.zero_()
else:
data = p.grad.data
p.grad = Variable(data.new().resize_as_(data).zero_())
def step(self, closure):
"""Performs a single optimization step (parameter update).
Arguments:
closure (callable): A closure that reevaluates the model and
returns the loss. Optional for most optimizers.
"""
raise NotImplementedError
Optimizer在init中将传入的params保存到self.param_groups,另外两个重要的方法zero_grad负责将参数的grad置零方便下次计算,step负责参数的更新,由子类实现。
以列子中的sgd = torch.optim.SGD(net.parameters(), lr=0.001)为例,其中net.parameters()返回Net参数的迭代器,为待优化参数;lr指定学习率。
SGD.py:
class SGD(Optimizer):
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False):
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(SGD, self).__init__(params, defaults)
def __setstate__(self, state):
super(SGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = d_p.clone()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
p.data.add_(-group['lr'], d_p)
return loss
SGD的step方法中,判断是否使用权重衰减和动量更新,如果不使用,直接更新权重param := param - lr * d(param)。例子中调用sgd.step()后完成一次epoch。这里由于传递到Optimizer的参数集是可更改(mutable)的,step中对参数的更新同样是Net中参数的更新。
小结
到此,根据一个简单例子阅读了pytorch中Python实现的部分源码,没有深入到底层Tensor、autograd等部分的C拓展实现,后面再继续读一读C拓展部分的代码。
原创文章, 转载注明出处
更多关注公众号: