py-faster-rcnn之proposal layer 学习

功能:

proposal layer 负责将 回归得到的([dx(A),dy(A),dw(A),dh(A)]与 foreground anchors 结合,计算出精准的proposal ,送入后续的 Roi Pooling layer

层的定义:

layer {
  name: 'proposal'
  type: 'Python'
  bottom: 'rpn_cls_prob_reshape'
  bottom: 'rpn_bbox_pred'
  bottom: 'im_info'
  top: 'rpn_rois'
#  top: 'rpn_scores'
  python_param {
    module: 'rpn.proposal_layer'
    layer: 'ProposalLayer'
    param_str: "'feat_stride': 16"
  }
}

输入:

  • fg/bg anchors 分类器的结果:rpn_cls_prob_reshape;
  • 对应的bbox reg的[dx(A),dy(A),dw(A),dh(A)]变换量rpn_bbox_pred
  • im_info 图片信息
  • feat_stride=16 步长为16

(一)bounding box regression原理

py-faster-rcnn之proposal layer 学习_第1张图片
image

如图所示:
绿色框为 Ground Truth(GT)
红色框为 提取的foreground anchors;
我们需要对红色框进行修正;

对于每个框,我们用(x,y,w,h)中心点(x,y),以及宽高(w,h)表示;

则红色框A 代表原始的foreground anchors
绿色框G代表目标的GT;
给定一种映射f ,使得,其中,;

py-faster-rcnn之proposal layer 学习_第2张图片
image

(1) 先做平移:

(2)再做缩放:

所以,需要学习的是 这四个变化;

在Faster R-CNN 原文中,平移量与尺度因子如下:

接下来的问题就是如何通过线性回归获得dx(A),dy(A),dw(A),dh(A)了。线性回归就是给定输入的特征向量X, 学习一组参数W, 使得经过线性回归后的值跟真实值Y(即GT)非常接近,即Y=WX。对于该问题,输入X是一张经过num_output=1的1x1卷积获得的feature map,定义为Φ;同时还有训练传入的GT,即(tx, ty, tw, th)。输出是dx(A),dy(A),dw(A),dh(A)四个变换。
那么目标函数可以表示为:


其中为对应anchor的feature map 组成的特征向量,w 是需要学习的参数,d(A)是预测值(x,y,w,h);
所用我们采用mse loss 的话:

所以正则化后.函数优化目标为:

在caffe 中,利用一个conv 层进行 (dx,dy,dw,dh)的学习:

layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  convolution_param {
    num_output: 36   # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
  }
}

caffe blob存储为[1, 4x9, Q, P]。与上文中fg/bg anchors存储为[1, 18, Q, P]类似;

在py-faster-rcnn 中,回归框的代码如 下:

##bbox_transform.py
def bbox_transform_inv(boxes, deltas):
    if boxes.shape[0] == 0:
        return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype)

    boxes = boxes.astype(deltas.dtype, copy=False)

    widths = boxes[:, 2] - boxes[:, 0] + 1.0
    heights = boxes[:, 3] - boxes[:, 1] + 1.0
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights

    dx = deltas[:, 0::4]
    dy = deltas[:, 1::4]
    dw = deltas[:, 2::4]
    dh = deltas[:, 3::4]

    #利用公式得到回归框的位置
    #(1)平移框的位置
    pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
    pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
    #(2)缩放框的位置
    pred_w = np.exp(dw) * widths[:, np.newaxis]
    pred_h = np.exp(dh) * heights[:, np.newaxis]

    pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)

    #重新恢复[x1,y1,x2,y2]的形式
    # x1
    pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
    # y1
    pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
    # x2
    pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
    # y2
    pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h

    return pred_boxes

(二)proposal forward函数解析

  1. 首先,获取参数,方便进行nms
    def forward(self, bottom, top):
        # Algorithm:
        #
        # for each (H, W) location i
        #   generate A anchor boxes centered on cell i
        #   apply predicted bbox deltas at cell i to each of the A anchors
        # clip predicted boxes to image
        # remove predicted boxes with either height or width < threshold
        # sort all (proposal, score) pairs by score from highest to lowest
        # take top pre_nms_topN proposals before NMS
        # apply NMS with threshold 0.7 to remaining proposals
        # take after_nms_topN proposals after NMS
        # return the top proposals (-> RoIs top, scores top)

        assert bottom[0].data.shape[0] == 1, \
            'Only single item batches are supported'

        cfg_key = str(self.phase) # either 'TRAIN' or 'TEST'

        pre_nms_topN  = cfg[cfg_key].RPN_PRE_NMS_TOP_N
        post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
        nms_thresh    = cfg[cfg_key].RPN_NMS_THRESH
        min_size      = cfg[cfg_key].RPN_MIN_SIZE
  1. 再次产生anchor,方便对框进行精准回归(之前anchorTarget 产生过一次anchor, 那是为了与target计算IOU,方便计算哪个anchor 属于fg/bg)

        # Enumerate all shifts  
        #再次生产anchors
        shift_x = np.arange(0, width) * self._feat_stride
        shift_y = np.arange(0, height) * self._feat_stride
        shift_x, shift_y = np.meshgrid(shift_x, shift_y)
        shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
                            shift_x.ravel(), shift_y.ravel())).transpose()

        # Enumerate all shifted anchors:
        #
        # add A anchors (1, A, 4) to
        # cell K shifts (K, 1, 4) to get
        # shift anchors (K, A, 4)
        # reshape to (K*A, 4) shifted anchors
        A = self._num_anchors
        K = shifts.shape[0]
        anchors = self._anchors.reshape((1, A, 4)) + \
                  shifts.reshape((1, K, 4)).transpose((1, 0, 2))
        anchors = anchors.reshape((K * A, 4))

        # Transpose and reshape predicted bbox transformations to get them
        # into the same order as the anchors:
        #
        # bbox deltas will be (1, 4 * A, H, W) format
        # transpose to (1, H, W, 4 * A)
        # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a)
        # in slowest to fastest order
        bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4))

        # Same story for the scores:
        #
        # scores are (1, A, H, W) format
        # transpose to (1, H, W, A)
        # reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a)
        #
        scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1))
  1. 对anchor 框信息做回归拟合,为了得到更准确的框,同时,将回归后的框 去除 超出图像边缘部分,
        # Convert anchors into proposals via bbox transformations
        #利用 anchor 做 bounding box regression位置回归

        proposals = bbox_transform_inv(anchors, bbox_deltas)

        # 2. clip predicted boxes to image
        #取
        proposals = clip_boxes(proposals, im_info[:2])

        # 3. remove predicted boxes with either height or width < threshold
        # (NOTE: convert min_size to input image scale stored in im_info[2])
        keep = _filter_boxes(proposals, min_size * im_info[2])
        proposals = proposals[keep, :]
        scores = scores[keep]

clip_boxes 函数很简单, 将(x1,y1,x2,y2)分别与图像边缘做比较,保留在边缘内的框

def clip_boxes(boxes, im_shape):
    """
    Clip boxes to image boundaries.
    """
    
    # x1 >= 0
    boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
    # y1 >= 0
    boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
    # x2 < im_shape[1]
    boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
    # y2 < im_shape[0]
    boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
    return boxes

_filter_boxes 函数要做的事情是保留一定宽高的框;

def _filter_boxes(boxes, min_size):
    """Remove all boxes with any side smaller than min_size."""
    ws = boxes[:, 2] - boxes[:, 0] + 1
    hs = boxes[:, 3] - boxes[:, 1] + 1
    keep = np.where((ws >= min_size) & (hs >= min_size))[0]
    return keep

  1. 最后,做一遍nms,保留分数最大的N个框:

        # 6. apply nms (e.g. threshold = 0.7)
        # 7. take after_nms_topN (e.g. 300)
        # 8. return the top proposals (-> RoIs top)
        keep = nms(np.hstack((proposals, scores)), nms_thresh)
        if post_nms_topN > 0:
            keep = keep[:post_nms_topN]
        proposals = proposals[keep, :]
        scores = scores[keep]

        # Output rois blob
        # Our RPN implementation only supports a single input image, so all
        # batch inds are 0
        batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
        blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
        top[0].reshape(*(blob.shape))
        top[0].data[...] = blob

        # [Optional] output scores blob
        if len(top) > 1:
            top[1].reshape(*(scores.shape))
            top[1].data[...] = scores

nms python部分代码:

其实现的思想主要是将各个框的置信度进行排序,然后选择其中置信度最高的框A,将其作为标准选择其他框,同时设置一个阈值,当其他框B与A的重合程度超过阈值就将B舍弃掉,然后在剩余的框中选择置信度最大的框,重复上述操作。

作者在代码中为了速度,使用了用C 写的nms ;
但是,作者给出了python 版本的nms baseline ,方便理解:

import numpy as np

def py_cpu_nms(dets, thresh):
    """Pure Python NMS baseline."""
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]

    return keep

完整版本forward代码:

    def forward(self, bottom, top):
        # Algorithm:
        #
        # for each (H, W) location i
        #   generate A anchor boxes centered on cell i
        #   apply predicted bbox deltas at cell i to each of the A anchors
        # clip predicted boxes to image
        # remove predicted boxes with either height or width < threshold
        # sort all (proposal, score) pairs by score from highest to lowest
        # take top pre_nms_topN proposals before NMS
        # apply NMS with threshold 0.7 to remaining proposals
        # take after_nms_topN proposals after NMS
        # return the top proposals (-> RoIs top, scores top)

        assert bottom[0].data.shape[0] == 1, \
            'Only single item batches are supported'

        cfg_key = str(self.phase) # either 'TRAIN' or 'TEST'

        pre_nms_topN  = cfg[cfg_key].RPN_PRE_NMS_TOP_N
        post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
        nms_thresh    = cfg[cfg_key].RPN_NMS_THRESH
        min_size      = cfg[cfg_key].RPN_MIN_SIZE

        # the first set of _num_anchors channels are bg probs
        # the second set are the fg probs, which we want
        #取softmax 分类后的各个框的分数
        scores = bottom[0].data[:, self._num_anchors:, :, :]
        bbox_deltas = bottom[1].data
        im_info = bottom[2].data[0, :]

        if DEBUG:
            print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
            print 'scale: {}'.format(im_info[2])

        # 1. Generate proposals from bbox deltas and shifted anchors
        height, width = scores.shape[-2:]

        if DEBUG:
            print 'score map size: {}'.format(scores.shape)

        # Enumerate all shifts  
        #再次生产anchors
        shift_x = np.arange(0, width) * self._feat_stride
        shift_y = np.arange(0, height) * self._feat_stride
        shift_x, shift_y = np.meshgrid(shift_x, shift_y)
        shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
                            shift_x.ravel(), shift_y.ravel())).transpose()

        # Enumerate all shifted anchors:
        #
        # add A anchors (1, A, 4) to
        # cell K shifts (K, 1, 4) to get
        # shift anchors (K, A, 4)
        # reshape to (K*A, 4) shifted anchors
        A = self._num_anchors
        K = shifts.shape[0]
        anchors = self._anchors.reshape((1, A, 4)) + \
                  shifts.reshape((1, K, 4)).transpose((1, 0, 2))
        anchors = anchors.reshape((K * A, 4))

        # Transpose and reshape predicted bbox transformations to get them
        # into the same order as the anchors:
        #
        # bbox deltas will be (1, 4 * A, H, W) format
        # transpose to (1, H, W, 4 * A)
        # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a)
        # in slowest to fastest order
        bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4))

        # Same story for the scores:
        #
        # scores are (1, A, H, W) format
        # transpose to (1, H, W, A)
        # reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a)
        #
        scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1))

        # Convert anchors into proposals via bbox transformations
        #利用 anchor 做 bounding box regression位置回归

        proposals = bbox_transform_inv(anchors, bbox_deltas)

        # 2. clip predicted boxes to image
        #取
        proposals = clip_boxes(proposals, im_info[:2])

        # 3. remove predicted boxes with either height or width < threshold
        # (NOTE: convert min_size to input image scale stored in im_info[2])
        keep = _filter_boxes(proposals, min_size * im_info[2])
        proposals = proposals[keep, :]
        scores = scores[keep]

        # 4. sort all (proposal, score) pairs by score from highest to lowest
        # 5. take top pre_nms_topN (e.g. 6000)
        order = scores.ravel().argsort()[::-1]
        if pre_nms_topN > 0:
            order = order[:pre_nms_topN]
        proposals = proposals[order, :]
        scores = scores[order]

        # 6. apply nms (e.g. threshold = 0.7)
        # 7. take after_nms_topN (e.g. 300)
        # 8. return the top proposals (-> RoIs top)
        keep = nms(np.hstack((proposals, scores)), nms_thresh)
        if post_nms_topN > 0:
            keep = keep[:post_nms_topN]
        proposals = proposals[keep, :]
        scores = scores[keep]

        # Output rois blob
        # Our RPN implementation only supports a single input image, so all
        # batch inds are 0
        batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)
        blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))
        top[0].reshape(*(blob.shape))
        top[0].data[...] = blob

        # [Optional] output scores blob
        if len(top) > 1:
            top[1].reshape(*(scores.shape))
            top[1].data[...] = scores

总结:

proposal layer forward 层依次进行的操作为:

  • 再次生产anchor,并对所有的anchor做了一边bbox reg 位置回归操作;
  • 按照输入的foreground softmax scores由大到小排序anchors,提取前pre_nms_topN(e.g. 6000)个anchors。即提取修正位置后的foreground anchors
  • 利用feat_stride和im_info将anchors映射回原图,判断fg anchors是否大范围超过边界,剔除严重超出边界fg anchors。
  • 进行nms(nonmaximum suppression,非极大值抑制)
  • 再次按照nms后的foreground softmax scores由大到小排序fg anchors,提取前post_nms_topN(e.g. 300)结果作为proposal输出

你可能感兴趣的:(py-faster-rcnn之proposal layer 学习)