1. ARC和MRC
Objective-c中提供了两种内存管理机制MRC(MannulReference Counting)和ARC(Automatic Reference Counting),分别提供对内存的手动和自动管理,来满足不同的需求。Xcode 4.1及其以前版本没有ARC。
在MRC的内存管理模式下,与对变量的管理相关的方法有:retain,release和autorelease。retain和release方法操作的是引用记数,当引用记数为零时,便自动释放内存。并且可以用NSAutoreleasePool对象,对加入自动释放池(autorelease调用)的变量进行管理,当drain时回收内存。
retain,该方法的作用是将内存数据的所有权附给另一指针变量,引用数加1,即retainCount+= 1;
release,该方法是释放指针变量对内存数据的所有权,引用数减1,即retainCount-= 1;
autorelease,该方法是将该对象内存的管理放到autoreleasepool中。
在ARC中与内存管理有关的标识符,可以分为变量标识符和属性标识符,对于变量默认为__strong,而对于属性默认为unsafe_unretained。也存在autoreleasepool。
其中assign/retain/copy与MRC下property的标识符意义相同,strong类似与retain,assign类似于unsafe_unretained,strong/weak/unsafe_unretained与ARC下变量标识符意义相同,只是一个用于属性的标识,一个用于变量的标识(带两个下划短线__)。所列出的其他的标识符与MRC下意义相同。
2. 线程和进程
进程,是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态概念,竟争计算机系统资源的基本单位。每一个进程都有一个自己的地址空间,即进程空间或(虚空间)。进程空间的大小 只与处理机的位数有关,一个 16 位长处理机的进程空间大小为 216 ,而 32 位处理机的进程空间大小为 232 。进程至少有 5 种基本状态,它们是:初始态,执行态,等待状态,就绪状态,终止状态。
线程,在网络或多用户环境下,一个服务器通常需要接收大量且不确定数量用户的并发请求,为每一个请求都创建一个进程显然是行不通的,——无论是从系统资源开销方面或是响应用户请求的效率方面来看。因此,操作系统中线程的概念便被引进了。线程,是进程的一部分,一个没有线程的进程可以被看作是单线程的。线程有时又被称为轻权进程或轻量级进程,也是 CPU 调度的一个基本单位。
进程的执行过程是线状的,尽管中间会发生中断或暂停,但该进程所拥有的资源只为该线状执行过程服务。一旦发生进程上下文切换,这些资源都是要被保护起来的。这是进程宏观上的执行过程。而进程又可有单线程进程与多线程进程两种。我们知道,进程有 一个进程控制块 PCB ,相关程序段 和 该程序段对其进行操作的数据结构集 这三部分,单线程进程的执行过程在宏观上是线性的,微观上也只有单一的执行过程;而多线程进程在宏观上的执行过程同样为线性的,但微观上却可以有多个执行操作(线程),如不同代码片段以及相关的数据结构集。线程的改变只代表了 CPU 执行过程的改变,而没有发生进程所拥有的资源变化。除了 CPU 之外,计算机内的软硬件资源的分配与线程无关,线程只能共享它所属进程的资源。与进程控制表和 PCB 相似,每个线程也有自己的线程控制表 TCB ,而这个 TCB 中所保存的线程状态信息则要比 PCB 表少得多,这些信息主要是相关指针用堆栈(系统栈和用户栈),寄存器中的状态数据。进程拥有一个完整的虚拟地址空间,不依赖于线程而独立存在;反之,线程是进程的一部分,没有自己的地址空间,与进程内的其他线程一起共享分配给该进程的所有资源。
线程可以有效地提高系统的执行效率,但并不是在所有计算机系统中都是适用的,如某些很少做进程调度和切换的实时系统。使用线程的好处是有多个任务需要处理机处理时,减少处理机的切换时间;而且,线程的创建和结束所需要的系统开销也比进程的创建和结束要小得多。最适用使用线程的系统是多处理机系统和网络系统或分布式系统。
3.@protocol 和 category 中如何使用 @property
- 在protocol中使用property只会生成setter和getter方法声明,我们使用属性的目的,是希望遵守我协议的对象能实现该属性
- category 使用 @property 也是只会生成setter和getter方法的声明,如果我们真的需要给category增加属性的实现,需要借助于运行时的两个函数:
- objc_setAssociatedObject
- objc_getAssociatedObject
4.深浅复制和属性为copy,strong值的变化问题
浅复制:只复制指向对象的指针,而不复制引用对象本身。对于浅复制来说,A和A_copy指向的是同一个内存资源,复制的只不个是一个指针,对象本身资源还是只有一份,那如果我们对A_copy执行了修改操作,那么发现A引用的对象同样被修改了。深复制就好理解了,内存中存在了两份独立对象本身。
在Objective-C中并不是所有的对象都支持Copy,MutableCopy,遵守NSCopying协议的类才可以发送Copy消息,遵守NSMutableCopying协议的类才可以发送MutableCopy消息。
[immutableObject copy] // 浅拷贝
[immutableObject mutableCopy] //深拷贝
[mutableObject copy] //深拷贝
[mutableObject mutableCopy] //深拷贝
属性设为copy,指定此属性的值不可更改,防止可变字符串更改自身的值的时候不会影响到对象属性(如NSString,NSArray,NSDictionary)的值。strong此属性的指会随着变化而变化。copy是内容拷贝,strong是指针拷贝。
5.KVO,NSNotification,delegate及block区别
KVO就是cocoa框架实现的观察者模式,一般同KVC搭配使用,通过KVO可以监测一个值的变化,比如View的高度变化。是一对多的关系,一个值的变化会通知所有的观察者。
NSNotification是通知,也是一对多的使用场景。在某些情况下,KVO和NSNotification是一样的,都是状态变化之后告知对方。NSNotification的特点,就是需要被观察者先主动发出通知,然后观察者注册监听后再来进行响应,比KVO多了发送通知的一步,但是其优点是监听不局限于属性的变化,还可以对多种多样的状态变化进行监听,监听范围广,使用也更灵活。
delegate 是代理,就是我不想做的事情交给别人做。比如狗需要吃饭,就通过delegate通知主人,主人就会给他做饭、盛饭、倒水,这些操作,这些狗都不需要关心,只需要调用delegate(代理人)就可以了,由其他类完成所需要的操作。所以delegate是一对一关系。
block是delegate的另一种形式,是函数式编程的一种形式。使用场景跟delegate一样,相比delegate更灵活,而且代理的实现更直观。
KVO一般的使用场景是数据,需求是数据变化,比如股票价格变化,我们一般使用KVO(观察者模式)。delegate一般的使用场景是行为,需求是需要别人帮我做一件事情,比如买卖股票,我们一般使用delegate。Notification一般是进行全局通知,比如利好消息一出,通知大家去买入。delegate是强关联,就是委托和代理双方互相知道,你委托别人买股票你就需要知道经纪人,经纪人也不要知道自己的顾客。Notification是弱关联,利好消息发出,你不需要知道是谁发的也可以做出相应的反应,同理发消息的人也不需要知道接收的人也可以正常发出消息。
6.static作用?
- 函数体内 static 变量的作用范围为该函数体,不同于 auto 变量,该变量的内存只被分配一次,因此其值在下次调用时仍维持上次的值;
- 在模块内的 static 全局变量可以被模块内所用函数访问,但不能被模块外其它函数访问;
- 在模块内的 static 函数只可被这一模块内的其它函数调用,这个函数的使用范围被限制在声明它的模块内;
- 在类中的 static 成员变量属于整个类所拥有,对类的所有对象只有一份拷贝;
- 在类中的 static 成员函数属于整个类所拥有,这个函数不接收 this 指针,因而只能访问类的static 成员变量。