POJ_1966
由于枚举的点有可能恰好是割点,所以要分别枚举源点和汇点,而且源点和汇点不能相邻,然后做最大流。所有最大流中的最小值即为最后结果,当然如果所有点都相邻的话结果自然就是N了。
#include<stdio.h> #include<string.h> #include<algorithm> #define MAXD 110 #define MAXM 10110 #define INF 0x3f3f3f3f char b[110]; int N, M, first[MAXD], e, next[MAXM], v[MAXM], flow[MAXM], g[MAXD][MAXD]; int S, T, d[MAXD], q[MAXD], work[MAXD], ANS; struct Edge { int x, y; }edge[MAXM]; void init() { int i; memset(g, 0, sizeof(g)); for(i = 0; i < M; i ++) { scanf("%s", b), sscanf(b, "(%d,%d)", &edge[i].x, &edge[i].y); g[edge[i].x][edge[i].y] = g[edge[i].y][edge[i].x] = 1; } } void add(int x, int y, int z) { v[e] = y, flow[e] = z; next[e] = first[x], first[x] = e ++; } void build(int s, int t) { int i, j; S = s + N, T = t; memset(first, -1, sizeof(first[0]) * (N * 2 + 2)), e = 0; for(i = 0; i < N; i ++) add(i, i + N, 1), add(i + N, i, 0); for(i = 0; i < M; i ++) { add(edge[i].x + N, edge[i].y, INF), add(edge[i].y, edge[i].x + N, 0); add(edge[i].y + N, edge[i].x, INF), add(edge[i].x, edge[i].y + N, 0); } } int bfs() { int i, j, rear = 0; memset(d, -1, sizeof(d[0]) * (N * 2 + 2)); d[S] = 0, q[rear ++] = S; for(i = 0; i < rear; i ++) for(j = first[q[i]]; j != -1; j = next[j]) if(flow[j] && d[v[j]] == -1) { d[v[j]] = d[q[i]] + 1, q[rear ++] = v[j]; if(v[j] == T) return 1; } return 0; } int dfs(int cur, int a) { if(cur == T) return a; for(int &i = work[cur]; i != -1; i = next[i]) if(flow[i] && d[v[i]] == d[cur] + 1) if(int t = dfs(v[i], std::min(a, flow[i]))) { flow[i] -= t, flow[i ^ 1] += t; return t; } return 0; } int dinic() { int ans = 0, t; while(bfs()) { memcpy(work, first, sizeof(first[0]) * (N * 2 + 2)); while(t = dfs(S, INF)) ans += t; } return ans; } void solve() { int i, j, ans = N; for(i = 0; i < N; i ++) for(j = i + 1; j < N; j ++) if(!g[i][j]) { build(i, j); ans = std::min(ans, dinic()); } printf("%d\n", ans); } int main() { while(scanf("%d%d", &N, &M) == 2) { init(); solve(); } return 0; }