- 【c++】【线程池】固定式线程池存在的问题以及解决方式
钟离墨笺
c++c++开发语言
【c++】【线程池】固定式线程池存在的问题以及解决方式1线程池只能处理返回值类型为空参数类型也为空的任务因为在设计上固定式线程池使用了usingTask=std::function;这个设计解决方式可以通过bind的方式解决在向线程池添加任务时通过bind进行添加mypool.AddTask(bind(func,i))2如果停止线程池时内部调用直接停止函数Stop()m_queue.Stop()这
- IDEA撤销commit
亚林瓜子
intellij-ideajavaide
问题有时候,提交commit的时候,提交错了分支。这个时候需要撤销commit提交。怎么处理。IDEA找到Commit日志提交记录:然后右键选择撤销commit即可:总结新版IDEA进行git撤销更加简单了。
- Spring MVC 的执行流程
圈圈编码
springmvcjava
SpringMVC是一个基于Java的请求驱动型Web框架,其核心设计围绕前端控制器模式,通过DispatcherServlet协调各个组件处理HTTP请求。以下是其完整的执行流程,共分为8个核心步骤:1.HTTP请求到达DispatcherServlet入口:所有请求首先由DispatcherServlet(前端控制器)接收。配置:在web.xml中定义DispatcherServlet并映射U
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- [AI] [ComfyUI]理解ComyUI的基本原理及其图像生成技术
技术小甜甜
AI探索者人工智能AI作画
ComyUI作为一种图像生成框架,其背后的核心技术基于潜在空间的概念,并通过各种深度学习模块实现高效的图像生成与本地部署。本文将详细探讨ComyUI的基本原理,涵盖其在图像生成中的关键概念,包括潜在空间、VAE模块、噪声处理以及CLIP编码器节点的作用。1.潜在空间的存在与生成效率什么是潜在空间?潜在空间(LatentSpace)是指数据压缩后的低维空间。在图像生成中,潜在空间的引入极大地提高了生
- 今天写一篇新手向,如何快速写出SpringMVC架构
小巫程序Demo日记
Spring深层了解架构springbootjava
小巫程序Demo日记:如何快速掌握MVC架构思想一、MVC是什么?在学习SpringMVC之前,我们首先需要弄明白MVC是什么。MVC是一种设计模式,全称是Model-View-Controller(模型-视图-控制器),它将应用程序分成三个主要部分,彼此分工明确:Model(模型)作用:负责管理数据和业务逻辑。职责:存储数据(比如数据库中的用户信息)、处理数据的规则(比如验证输入是否合法)、以及
- 学影刀有什么好处?为什么学习影刀?
sc0_joker
学习rpa
引言:影刀RPA,学了有用吗?公司在推广用这个软件,在让大家学,学得好可以转岗RPA专员,请问一下大家值不值得花时间学?我个人觉得如果有时间的话还是学,后期对你的帮助是巨大的我作为一名数字营销专业人士,每周需要处理大量的数据。去年,我开始寻找能够自动化Windows软件操作的工具,以提高工作效率。在尝试了多种RPA工具后,我最终选择了影刀RPA,并开始了我的自动化之旅。在寻找自动化工具的过程中,我
- VIT(Vision Transformer)【超详细 pytorch实现
周玄九
计算机视觉transformer深度学习人工智能
CNN的局限性:传统的CNN通过局部卷积核提取特征,虽然可以通过堆叠多层卷积扩大感受野,但仍然依赖于局部信息的逐步聚合,难以直接建模全局依赖关系。ViT的优势:ViT使用自注意力机制(Self-Attention),能够直接捕捉图像中所有patch(图像块)之间的全局关系。这种全局建模能力在处理需要长距离依赖的任务(如图像分类、目标检测)时表现更好。全流程图像预处理+分块图像尺寸标准化,如(224
- Python 网络爬虫入门全知道
安年CJ
Pythonpython爬虫开发语言运维php服务器
一、引言在当今数字化时代,网络上的数据量呈爆炸式增长。无论是进行数据分析、市场调研,还是开发智能应用,获取网络数据都变得极为重要。而Python网络爬虫就是一把打开网络数据宝库的利器。它能够自动地从网页中抓取我们需要的信息,为后续的数据处理和分析提供丰富的素材。本博客将带领大家逐步走进Python网络爬虫的精彩世界。二、网络爬虫基础概念(一)什么是网络爬虫网络爬虫,也称为网页蜘蛛,是一种按照一定的
- 补充:文件上传、下载传输给前端之直接传递图片二进制数据:网络中的图片、音频、视频等非字符数据的传输
JU HE
JavaWeb开发基础网络音视频
文章目录1Base64编码传递图片、视频二进制数据2后端直接传递图片二进制数据案例2.1后端:创建专用DTO(推荐方案)2.2前端处理建议1Base64编码传递图片、视频二进制数据前面我们在学习Java的IO流的时候讲过字节流和字符流。字符的传输:前后端字符的传输JSON中就是直接传字符就可以了讲一下实际中的变换过程:字符流中字符的传输是参考博客字符串—>(编码方式对应起来)字符数组—>二进制数据
- LangChain:Models、Prompts、Indexes、Memory、Chains、Agents。MaxKB
ZhangJiQun&MXP
2021AIpython2024大模型以及算力教学langchain人工智能自然语言处理语言模型神经网络
LangChain:Models、Prompts、Indexes、Memory、Chains、Agents在LangChain框架中,Models、Prompts、Indexes、Memory、Chains、Agents是六大核心抽象概念,它们各自承担独特功能,相互协作以助力开发者基于大语言模型构建高效智能应用。Models(模型):指代各类大语言模型(LLM),是提供语言处理和生成能力的基础。如
- 深度学习重要论文阅读笔记 ResNet (2025.2.26)
北岛寒沫
逐界星辰2025计算机科研深度学习论文阅读笔记
文章目录问题背景数据预处理神经网络模型模型性能知识点积累英语单词积累问题背景随着神经网络变得更深(层数变多),模型的训练过程也会变得更加困难。当神经网络的深度增加,就会出现梯度消失和梯度下降现象,妨碍模型的收敛。不过,这种情况可以通过归一化的模型初始化和中间的归一化层基本解决。但是,尽管在增加了归一化技术的情况下很深的神经网络可以收敛,又出现了另外一个问题,即随着模型深度的增加,模型的准确率反而下
- WordPress Course Booking System SQL注入漏洞复现 (CVE-2025-22785)(附脚本)
iSee857
漏洞复现安全web安全
免责申明:本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。0x01产品描述:课程预订系统是一个在线平台,旨在简化课程报名流程。用户可以通过系统浏览可用课程,查看详细的课程描述、时间安排和讲师信息,并通过简单的
- pandas series 相加_Numpy和Pandas教程
weixin_39778393
pandasseries相加
Pandas简介-python数据分析library-基于numpy(对ndarray的操作)-有一种用python做Excel/SQL/R的感觉-为什么要学习pandas?-pandas和机器学习的关系,数据预处理,featureengineering。-pandas的DataFrame结构和大家在大数据部分见到的spark中的DataFrame非常类似。目录-numpy速成-Series-Da
- 大语言模型原理与工程实践:Transformer 大语言模型预训练
AI天才研究院
计算ChatGPTtransformer
大语言模型原理与工程实践:Transformer大语言模型预训练关键词:大语言模型、预训练、Transformer、自监督学习、计算资源、数据处理文章目录大语言模型原理与工程实践:Transformer大语言模型预训练1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1大语言模型(LargeLanguageModels,LLMs)2.2预训练(Pre-tr
- ARM 处理器平台 eMMC Flash 存储磨损测试示例
toradexsh
armlinuxNXPeMMCToradex
ByToradex秦海1).简介目前工业嵌入式ARM平台最常用的存储器件就是eMMCNandFlash存储,而由于工业设备一般生命周期都比较长,eMMC存储器件的磨损寿命对于整个设备来说至关重要,因此本文就基于NXPi.MX8MMiniARM处理器平台演示eMMC器件磨损测试的示例流程。关于eMMC存储器件的基本介绍可以参考如下文章,eMMC存储器件通常包含有eMMCNandFlash控制器和一定
- 【总结分析篇】DeepSeek 百问百答:你想知道的关于 DeepSeek 的一切,都在这里!
再见孙悟空_
【2025AI学习从零单排系列】deepSeekDeepSeekAIAI编程AI写作人工智能
DeepSeek作为一款强大的AI工具,最近可是火得不行!你是不是也对它充满好奇,想一探究竟?别急,这篇博客就为你准备了100个关于DeepSeek的问题和解答,从基本功能到使用技巧,从应用场景到未来展望,一次性满足你的所有好奇心产品基础1.DeepSeek是什么?它是一款融合深度思考与联网搜索的智能工具,能帮你快速处理信息、解决问题。2.谁开发的DeepSeek?由专业的研发团队打造,致力于为用
- AI取代的不是人类,而是不会使用AI的人
xiaocang668888
人工智能
面对人工智能对职场的深度渗透,职场人需从技能升级、能力重构、思维转型三个维度构建核心竞争力。以下是具体策略:一、技能升级:掌握AI协同工具AI工具链学习掌握主流AI工具(如Claude、Midjourney)的操作逻辑,将重复性工作(数据分析、文档处理)交由AI完成,释放时间用于高阶任务。例如,市场营销人员用AI生成广告初稿后,再注入人性化洞察。技术门槛公式:CAI=任务重复度工具掌握度×业务理解
- DeepEP:开源通信库的高效专家并行计算解决方案
耶耶Norsea
网络杂烩人工智能
摘要DeepEP是一个专为Mixture-of-Experts(MoE)和专家并行计算设计的开源通信库。它提供高效的all-to-all通信模式,支持GPU之间的高吞吐量和低延迟数据交换。DeepEP旨在优化专家并行计算中的通信效率,确保在大规模分布式系统中实现高性能的数据处理。关键词开源通信库,专家并行,MoE计算,GPU交换,高效通信一、大纲11.1DeepEP开源通信库概述DeepEP是一个
- 高效能计算与高速数据传输的完美结合:飞腾D2000处理器与复旦微双FPGA集成主板
国产化嵌入式平台解决方案
fpga开发linux硬件工程硬件架构pcb工艺嵌入式硬件
随着数字化转型和高性能计算需求的不断增长,工业、通信、人工智能等领域对硬件平台的性能要求也在不断提升。为应对这些挑战,一款高效能、灵活可扩展的定制主板应运而生,基于飞腾D2000处理器和复旦微FPGA技术,提供了一流的计算能力和高速数据传输能力,成为企业高性能计算与数据处理需求的理想选择。这款主板并非通用的开发板,而是针对特定需求的定制化设计。它更适合那些需要高性能计算、FPGA并行处理或高速通信
- 深度学习-自学手册
谁用了尧哥这个昵称
AI深度学习
人工智能机器学习神经网络前馈神经网络:没有回路的反馈神经网络:有回路的DNN深度神经网络CNN卷积神经网络RNN循环神经网络LSTM是RNN的一种,长短期记忆网络自然语言处理神经网络神经元-分类器Hebb学习方法,随机–类似SGD一篇神经网络入门BP反向传播,表示很复杂的函数/空间分布从最后一层往前调整参数,反复循环该操作y=a(wx+b)x输入y输出a激活函
- 【小白必看!Python 从 0 到 1 数据处理与图形绘制应用全流程案例】
生活De°咸鱼
python开发语言
1.环境准备首先,你需要安装必要的Python库,这里主要用到pandas进行数据处理,matplotlib和seaborn进行图形绘制。可以使用以下命令进行安装:pipinstallpandasmatplotlibseaborn2.数据准备假设我们有一个包含电商销售信息的CSV文件sales_data.csv,文件内容可能如下:date,product,category,sales2024-01
- android studio调用python_Android-Python混合开发 1 (java和python互相调用)
weixin_39630095
androidstudio调用python
众所周知,python的语法简洁,并且拥有丰富强大的开源库,如果能把python移植到Android系统,能够用Android和python混合开发一款app,那就太酷了。要想移植python,得需要下载源码并且交叉编译才行。这个过程太复杂。在这里,介绍一款第三方,复杂的过程交给它处理,我们只需要处理逻辑相关的python代码即可。Chaquopy0x01集成1)打开项目根目录下的build.gr
- 自然语言处理(Natural Language Processing, NLP)的主要应用及核心技术
彬彬侠
自然语言处理NLP自然语言处理
自然语言处理(NLP)是人工智能(AI)的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP在多个领域有着广泛的应用,并结合了多种先进的技术,包括机器学习(ML)、深度学习(DL)、统计模型以及规则方法。1.自然语言处理的主要应用1.1机器翻译(MachineTranslation,MT)应用场景:在线翻译:GoogleTranslate、DeepL、BaiduTranslate。跨语
- DeepSeek 高阶应用技术详解(4)
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用deepseek
1.引言在前三篇中,我们探讨了DeepSeek的基础功能、分布式训练、模型优化、模型解释性、超参数优化以及AutoML的应用。本篇将深入探讨DeepSeek在时间序列分析、图神经网络(GNN)和推荐系统中的应用。这些领域是深度学习的前沿方向,具有广泛的实际应用价值。2.DeepSeek在时间序列分析中的应用2.1时间序列分析简介时间序列分析是处理时间相关数据的重要技术,广泛应用于金融、气象、医疗等
- 微信小程序页面导航与路由:实现多页面跳转与数据传递
Evaporator Core
微信小程序开发入门微信小程序notepad++小程序
在上一篇中,我们学习了微信小程序的数据绑定和事件处理,实现了动态交互功能。然而,一个完整的小程序通常由多个页面组成,用户需要在不同页面之间进行跳转。本文将深入探讨微信小程序的页面导航与路由机制,帮助你实现多页面跳转以及页面间的数据传递。一、页面导航的基本概念微信小程序的页面导航通过路由机制实现,开发者可以通过代码或组件的方式实现页面跳转。页面导航的核心是wx.navigateTo、wx.redir
- 深入解析 Vue 3 编译宏:揭开 `<script setup>` 的魔法面纱
斯~内克
vue知识点前端vue.js前端javascript
一、编译宏的本质与设计哲学1.1什么是编译宏在Vue3的CompositionAPI生态中,编译宏(CompilerMacros)是一组特殊的语法结构,它们在代码编译阶段被Vue编译器处理,最终转换为标准的JavaScript代码。这些宏函数是Vue3语法糖的核心组成部分,主要包含:defineProps:声明组件propsdefineEmits:定义自定义事件defineExpose:暴露组件公
- Java之I/O流(最详细的I/O流总结)
熊凯瑞
Javajava开发语言intellij-idea
I/O流I/O流1、定义2、分类2.1字节流和字符流2.2输入流和输出流2.3节点流和处理流3、结构4、字节流4.1定义4.2说明4.3字节流概述4.4InputStream的常用方法4.5OutputStream的常用方法5、字节流读写文件5.1说明5.2注意5.3字节输入流——相关代码5.4字节输出流——相关代码6、文件的拷贝6.1需求6.2分析6.3注意6.4快捷键6.5相关代码7、字节流的
- 深入探讨 Vue 3 响应式 API:为什么 ref/reactive 需要类型匹配?
斯~内克
vue知识点前端学习vue.js前端javascript
一、Vue3响应式系统基础在Vue3的CompositionAPI中,ref和reactive是构建响应式数据的核心工具。它们的定位差异源于JavaScript语言特性:ref设计初衷:处理基础类型(primitivetypes)的响应式包装reactive设计初衷:处理引用类型(referencetypes)的深度响应代理技术实现差异:ref通过对象包装({value:...})+reactiv
- 十分钟了解大数据处理的五大关键技术及其应用
IT时代周刊
2019年5月大数据程序员编程语言hadoop
其中主要工作环节包括:♦大数据采集、♦大数据预处理、♦大数据存储及管理、♦大数据分析及挖掘、♦大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。一、大数据采集技术数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号