- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- L1-5 别再来这么多猫娘了!
云格~
团队天梯赛算法c++
以GPT技术为核心的人工智能系统出现后迅速引领了行业的变革,不仅用于大量的语言工作(如邮件编写或文章生成等工作),还被应用在一些较特殊的领域——例如去年就有同学尝试使用ChatGPT作弊并被当场逮捕(全校被取消成绩)。相信聪明的你一定不会犯一样的错误!言归正传,对于GPT类的AI,一个使用方式受到不少年轻用户的欢迎——将AI变成猫娘:当然,由于训练数据里并不区分道德或伦理倾向,因此如果不加审查,A
- 训练模型时,步长为什么不能太大也不能太小?
yuanpan
人工智能
在训练模型时,步长(也称为学习率,LearningRate)是一个关键的超参数,它控制着每次参数更新的大小。步长既不能太大,也不能太小,原因如下:1.步长太大的问题如果步长过大,会导致以下问题:模型发散(Divergence):参数更新幅度过大,可能导致损失函数的值不断增大,甚至无法收敛,模型性能急剧下降。错过最优解:过大的步长可能导致参数在最优解附近震荡,甚至直接跳过最优解,无法找到良好的模型参
- 六十天前端强化训练之第十七天React Hooks 入门:useState 深度解析
编程星辰海
#前端前端react.jsjavascript
=====欢迎来到编程星辰海的博客讲解======看完可以给一个免费的三连吗,谢谢大佬!目录一、知识讲解1.Hooks是什么?2.useState的作用3.基本语法解析4.工作原理5.参数详解a)初始值设置方式b)更新函数特性6.注意事项7.类组件对比8.常见问题解答二、核心代码示例三、实现效果四、学习要点总结五、扩展阅读推荐官方文档优质文章推荐学习路径进阶资源六、实践步骤一、表单输入控制二、动态
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 深度学习-服务器训练SparseDrive过程记录
weixin_40826634
深度学习服务器人工智能
1、cuda安装1.1卸载安装失败的cuda参考:https://blog.csdn.net/weixin_40826634/article/details/127493809注意:因为/usr/local/cuda-xx.x/bin/下没有卸载脚本,很可能是apt安装的,所以通过执行下面的命令删除:apt-get--purgeremove"cuda*"apt-getautoremove然后执行f
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- 机器学习-----决策树
多巴胺与内啡肽.
机器学习机器学习决策树人工智能
文章目录1、概念2.决策树的构建过程2.1特征选择2.2树的生成2.3树的剪枝3.决策树的优缺点4.决策树的应用4.1分类任务4.2回归任务4.3集成学习代码示例总结1、概念1.1决策树是什么决策树是通过对样本的训练,建立出分类规则,并对新样本进行预测,属于有监督学习。根节点:最上面的节点。叶子节点:能直接看到结果的节点。非叶子节点:位于中间的节点。1.2决策树的类型分类树:用于分类任务,叶节点代
- 算法训练-拓扑排序2
往往歌咏理想
算法深度优先
洛谷P1807最长路https://www.luogu.com.cn/problem/P1807本题数据范围过大盲目使用dfs容易超时爆栈题目要求中提到i#defineintlonglong#defineendl'\n'/*===\\================//\\===================//\\============//\\==========//=========\\=
- 代码随想录算法训练营DAY05之栈和队列
失序空间
跟着代码随想录学算法算法c++
题目和链接232.用栈实现队列225.用队列实现栈20.有效的括号1047.删除字符串中的所有相邻重复项150.逆波兰表达式求值239.滑动窗口最大值347.前k个高频元素232.用栈实现队列题意:请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):实现MyQueue类:voidpush(intx)将元素x推到队列的末尾intpop()从
- HuggingFace下载模型并导入Ollama指南
Repetion_Maxumim
embedding语言模型人工智能自然语言处理ai
此处以moka-ai/m3e-base模型下载为例。众所周知,HuggingFace仓库托管了诸多训练模型。DeepSeek官方也将完整满血版DeepSeek-R1:671B模型镜像托管在此仓库,但是目前国内无法直接从HugingFace下载。并且,一般为了快速部署,会选择Ollama这类管模型管理工具,类似Docker引擎一样,但是Ollama支持的模型镜像格式(如GGUF)HuggingFac
- 增量预训练和微调的区别
做个天秤座的程序猿
大模型原理webkit
文章目录前言一、增量预训练和微调的区别二、代码示例1.增量预训练示例2.微调示例3.代码的区别三、数据格式1.增量预训练2.微调3.示例4.小结四、数据量要求1.指导原则2.示例3.实际操作中的考虑4.小结前言增量预训练是一种在现有预训练模型的基础上,通过引入新的数据或任务来进一步训练模型的方法。这种方法的主要目的是在不从头开始训练模型的情况下,利用新数据或特定领域的数据增强模型的能力和性能。增量
- 【Transformer-Hugging Face手册 07/10】 微调预训练模型
无水先生
人工智能高级阶段人工智能综合transformer深度学习人工智能
微调预训练模型-目录一、说明二、在本机PyTorch中微调预训练模型。2.1加载数据2.2训练2.2.1使用PyTorchTrainer进行训练2.3训练超参数2.4评价2.5训练类三、使用Keras训练TensorFlow模型3.1为Keras加载数据3.2将数据加载为tf.data.Dataset3.3数据加载器3.4优化器和学习率调度器3.5训练循环3.6评价四、结论一、说明 使用预训练模
- 《探秘人工智能与鸿蒙系统集成开发的硬件基石》
程序猿阿伟
人工智能harmonyos华为
在科技飞速发展的当下,人工智能与鸿蒙系统的集成开发开辟了创新的前沿领域。这一融合不仅代表着技术的演进,更预示着智能设备生态的全新变革。而在这场技术盛宴的背后,坚实的硬件配置是确保开发顺利进行的关键,它就像一座大厦的基石,决定了上层建筑的高度和稳定性。处理器:运算核心的澎湃动力处理器作为硬件系统的核心,在人工智能与鸿蒙系统集成开发中扮演着至关重要的角色。对于模型训练任务,尤其是深度学习模型,其复杂的
- 数据标注工具及其对预训练模型性能的影响
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1预训练模型的崛起近年来,预训练模型(Pre-trainedModels)在自然语言处理(NLP)领域取得了显著的成功。这些模型通过在大规模无标注文本数据集上进行预训练,学习到丰富的语言知识和语义表示,并在下游任务中展现出优异的性能。BERT、GPT-3等预训练模型的出现,标志着NLP领域进入了一个新的时代。1.2数据标注的重要性尽管预训练模型展现出强大的能力,但它们仍然需要针对特
- 数据标注质量对AI模型质量的影响分析
自由鬼
行业发展IT应用探讨人工智能机器学习深度学习AI
上、数据标注质量与AI模型的质量关系数据标注是AI最基础的工作,数据标注的质量决定了AI质量,影响数据标注质量的是数据标注的规则。1、数据标注是AI最基础的工作:数据标注是构建高质量AI模型的基石:数据标注尤其是在监督学习范式下,是AI领域最基础、最关键的工作之一。没有高质量的标注数据,就如同建造高楼大厦没有坚实的地基,AI模型就无法有效地学习和训练,最终的AI质量也就无从谈起。训练数据是AI模型
- 基于纯视觉的 GUI 代理的屏幕解析工具(OmniParser)
deepdata_cn
应用软件GUI
OmniParser是一款开源工具,可通过解析用户界面截图生成结构化数据,助力打造视觉驱动的GUI自动化代理,赋能跨平台交互。一、技术原理1.数据集构建:从流行网页和应用中提取数据,构建可交互图标检测数据集和图标描述数据集,为模型训练提供基础。2.检测模型:使用YOLOv8模型在可交互图标检测数据集上进行微调,能够识别和定位用户界面中的可交互区域,如按钮、图标等。3.描述模型:利用BLIP-v2模
- Anthropic 的模型
调皮的芋头
深度学习神经网络机器学习人工智能
Anthropic的模型(特别是Claude系列)之所以在性能和推理能力上表现强劲,可以从技术设计、研究理念、训练方法以及应用优化等多个方面进行详细分析。以下是基于当前信息(截至2025年3月13日)和行业趋势的深入剖析:1.技术设计与安全导向Anthropic由前OpenAI研究员创立,核心理念是将安全性、可解释性和可控性融入模型设计。这种设计哲学直接影响了Claude模型的性能:Constit
- RV1126笔记三十七:PaddleOCR检测模型训练
殷忆枫
RV1126项目实战笔记
若该文为原创文章,转载请注明原文出处。PaddleOCR检测模型训练及验证测试1、准备数据集在PaddleOCR目录下新建文件夹:train_data,这个文件夹用于存放数据集的。使用的是网上大佬提供的车牌识别数据集,下载后,解压到train_data目录下。可以自己网上找,了可以找我要数据集,或自己标注数据集。2、配置文件在PaddleOCR主目录下:configs/det/ch_ppocr_v
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
深度学习人工智能机器学习
1.基本概念微调(Fine-tuning)定义:微调是指在预训练大语言模型的基础上,通过在特定领域或任务的数据上进一步训练,从而使模型在该特定任务上表现更优。目的:适应具体的任务需求,比如法律文书写作、医疗问答、金融分析等,使得模型能更好地理解和生成符合领域要求的内容。过程:通常涉及准备领域特定的数据集、设计合适的损失函数、调整超参数(例如学习率、批量大小等),以及选择冻结或解冻部分参数来更新模型
- 大语言模型(LLMs)全面学习指南(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员人工智能语言模型人工智能自然语言处理
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- DeepSeek创始人专访:中国的AI不可能永远跟随,需要有人站到技术的前沿
AIBigModel
人工智能
来源:暗涌Waves,整理:FounderPark因为V3版本开源模型的发布,DeepSeek又火了一把,而且这一次,是外网刷屏。训练成本估计只有Llama3.1405B模型的11分之一,后者的效果还不如它。在多项测评上,DeepSeekV3达到了开源SOTA,超越Llama3.1405B,能和GPT-4o、Claude3.5Sonnet等TOP模型正面掰掰手腕——而其价格比Claude3.5Ha
- 十分钟学会微调大语言模型
喝不喝奶茶丫
语言模型人工智能自然语言处理大模型大模型应用AI大模型微调
在之前的文章中,我分享了一些使用大语言模型开发应用的方法,也介绍了几个开源大语言模型的部署方式,有同学给我留言说想知道怎么训练自己的大语言模型,让它更贴合自己的业务场景。完整的大语言模型训练成本比较高昂,不是我们业余玩家能搞的,如果我们只是想在某个业务场景或者垂直的方面加强大模型的能力,可以进行微调训练。本文就来介绍一种大语言模型微调的方法,使用的工具是我最近在用的TextGenerationWe
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- 神经网络完成训练的详细过程
每天五分钟玩转人工智能
神经网络人工智能深度学习pytorch机器学习优化算法包括梯度下降法
神经网络完成训练的详细过程一、神经网络的基本概念神经网络是一种模拟人脑神经系统的计算模型,由大量的神经元(节点)和它们之间的连接(权重)组成。神经元接收输入信号,通过加权求和和激活函数的处理,产生输出信号。这些输出信号又可以作为其他神经元的输入,从而形成一个复杂的网络结构。神经网络的训练过程就是调整这些权重和偏置(每个神经元除了有权重外,还有一个偏置项,用于调整输出的阈值),使得网络的输出能够尽可
- pytorch实现cifar10多分类总结
L_pyu
人工智能pytorch分类
cifar-10简介:CIFAR-10是一个常用的图像分类数据集,每张图片都是3×32×32,3通道彩色图片,分辨率32×32。它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>