就是运用\(Lucas\)推一个柿子
首先是前置芝士\(Lucas\)定理
\[C_{n}^{m}\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p\]
至于证明
我建议去问一下Lucas本人
至于这道题,我们要求的是这个柿子
\[\sum_{i=0}^kC_{n}^i\%p\]
于是我们设\(f(n,k)=\sum_{i=0}^kC_{n}^i\)
我们就可以化柿子啦
\[f(n,k)=\sum_{i=0}^kC_{n}^i\]
\[\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\sum_{i=0}^kC_{n/p}^{i/p}*C_{n\%p}^{i\%p}\]
这个东西一看就很熟悉,\(n/p\)啊,显然跟整除分块差不多啊
\[=C_{n/p}^0\sum_{i=0}^{p-1}C_{n\%p}^i+C_{n/p}^1\sum_{i=0}^{p-1}C_{n\%p}^i+...+C_{n/p}^{k/p}\sum_{i=0}^{k\%p}C_{n\%p}^i\]
前面有\(0\)到\(k/p-1\)这些个整块,于是我们可以将\(\sum_{i=0}^{p-1}C_{n\%p}^i\)提出来
变成
\[\sum_{i=0}^{p-1}C_{n\%p}^i*(C_{n/p}^0+C_{n/p}^1+...C_{n/p}^{k/p-1})\]
那这个东西岂不是可以写成
\[f(n\%p,p-1)*f(n/p,k/p-1)\]
在加上那个不完整的块
\(\sum_{i=0}^{k\%p}C_{n\%p}^i\)可以写成\(f(n\%p,k\%p)\)
于是就有
\[f(n,k)=f(n\%p,p-1)*f(n/p,k/p-1)+C_{n/p}^{k/p}*f(n\%p,k\%p)\]
由于\(n\%p\)还有\(k\%p\)都小于\(2333\),所以\(f(n\%p,p-1)\)还有\(f(n\%p,k\%p)\)可以直接预处理好可以直接求出来
至于那个\(C_{n/p}^{k/p}\)就直接上\(Lucas\)好了
时间复杂度\(O(p^2+Tlog_{2333}^2n)\)
代码
非常sb的把\(C_0^0\)当成\(0\)WA了好几发
#include
#include
#include
#define re register
#define LL long long
#define maxn 2335
const int P=2333;
LL c[maxn+2][maxn+2];
LL f[maxn+2][maxn+2];
inline LL Lucas(LL n,LL m)
{
if(!m) return 1;
if(n==m) return 1;
if(n