一、前言
训练集、验证集和测试集这三个名词在机器学习领域极其常见,但很多人并不是特别清楚,尤其是后两个经常被人混用。
在有监督(supervise)的机器学习中,数据集常被分成2~3个,即:训练集(train set),验证集(validation set),测试集(test set)。
二、训练集、验证集、测试集
如果给定的样本数据充足,我们通常使用均匀随机抽样的方式将数据集划分成3个部分——训练集、验证集和测试集,这三个集合不能有交集,常见的比例是8:1:1。需要注意的是,通常都会给定训练集和测试集,而不会给验证集。这时候验证集该从哪里得到呢?一般的做法是,从训练集中均匀随机抽样一部分样本作为验证集。
训练集
训练集用来训练模型,即确定模型的权重和偏置这些参数,通常我们称这些参数为学习参数。
验证集
而验证集用于模型的选择,更具体地来说,验证集并不参与学习参数的确定,也就是验证集并没有参与梯度下降的过程。验证集只是为了选择超参数,比如网络层数、网络节点数、迭代次数、学习率这些都叫超参数。比如在k-NN算法中,k值就是一个超参数。所以可以使用验证集来求出误差率最小的k。
测试集
测试集只使用一次,即在训练完成后评价最终的模型时使用。它既不参与学习参数过程,也不参数超参数选择过程,而仅仅使用于模型的评价。
值得注意的是,千万不能在训练过程中使用测试集,而后再用相同的测试集去测试模型。这样做其实是一个cheat,使得模型测试时准确率很高。
三、为何需要划分
简而言之,为了防止过度拟合。如果我们把所有数据都用来训练模型的话,建立的模型自然是最契合这些数据的,测试表现也好。但换了其它数据集测试这个模型效果可能就没那么好了。就好像你给班上同学做校服,大家穿着都合适你就觉得按这样做就对了,那给别的班同学穿呢?不合适的概率会高吧。总而言之训练集和测试集相同的话,模型评估结果可能比实际要好。
四、交叉验证
之所以出现交叉验证,主要是因为训练集较小。无法直接像前面那样只分出训练集,验证集,测试就可以了(简单交叉验证)。
需要说明的是,在实际情况下,人们不是很喜欢用交叉验证,主要是因为它会耗费较多的计算资源。一般直接把训练集按照50%-90%的比例分成训练集和验证集。但这也是根据具体情况来定的:如果超参数数量多,你可能就想用更大的验证集,而验证集的数量不够,那么最好还是用交叉验证吧。至于分成几份比较好,一般都是分成3、5和10份。
交叉验证的实现
首先我们给出下面的图
图上面的部分表示我们拥有的数据,而后我们对数据进行了再次分割,主要是对训练集,假设将训练集分成5份(该数目被称为折数,5-fold交叉验证),每次都用其中4份来训练模型,粉红色的那份用来验证4份训练出来的模型的准确率,记下准确率。然后在这5份中取另外4份做训练集,1份做验证集,再次得到一个模型的准确率。直到所有5份都做过1次验证集,也即验证集名额循环了一圈,交叉验证的过程就结束。算得这5次准确率的均值。留下准确率最高的模型,即该模型的超参数是什么样的最终模型的超参数就是这个样的。
好像Keras就是用的交叉验证或者固定超参数(知乎链接)
参考链接:
1、https://blog.csdn.net/cczx139/article/details/80266101
2、https://blog.csdn.net/jmh1996/article/details/79838917?tdsourcetag=s_pctim_aiomsg
原文:https://www.cnblogs.com/lfri/p/10546147.html