1.当n,m都很小的时候可以利用杨辉三角直接求。
C(n,m)=C(n-1,m)+C(n-1,m-1);
2、n和m较大,但是p为素数的时候
Lucas定理是用来求 c(n,m) mod p,p为素数的值。
C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p
也就是Lucas(n,m)%p=Lucas(n/p,m/p)*C(n%p,m%p)%p
求上式的时候,Lucas递归出口为m=0时返回1
求C(n%p, m%p)%p的时候,此处写成C(n, m)%p(p是素数,n和m均小于p)
C(n, m)%p = n! / (m ! * (n - m )!) % p = n! * mod_inverse[m! * (n - m)!, p] % p
由于p是素数,有费马小定理可知,m! * (n - m)! 关于p的逆元就是m! * (n - m)!的p-2次方。
p较小的时候预处理出1-p内所有阶乘%p的值,然后用快速幂求出逆元,就可以求出解。p较大的时候只能逐项求出分母和分子模上p的值,然后通过快速幂求逆元求解。
P较大,不打表:
1 ll pow(ll a, ll b, ll m) 2 { 3 ll ans = 1; 4 a %= m; 5 while(b) 6 { 7 if(b & 1)ans = (ans % m) * (a % m) % m; 8 b /= 2; 9 a = (a % m) * (a % m) % m; 10 } 11 ans %= m; 12 return ans; 13 } 14 ll inv(ll x, ll p)//x关于p的逆元,p为素数 15 { 16 return pow(x, p - 2, p); 17 } 18 ll C(ll n, ll m, ll p)//组合数C(n, m) % p 19 { 20 if(m > n)return 0; 21 ll up = 1, down = 1;//分子分母; 22 for(int i = n - m + 1; i <= n; i++)up = up * i % p; 23 for(int i = 1; i <= m; i++)down = down * i % p; 24 return up * inv(down, p) % p; 25 } 26 ll Lucas(ll n, ll m, ll p) 27 { 28 if(m == 0)return 1; 29 return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p; 30 }
P较小,打表:
1 const int maxn = 1e5 + 10; 2 ll fac[maxn];//阶乘打表 3 void init(ll p)//此处的p应该小于1e5,这样Lucas定理才适用 4 { 5 fac[0] = 1; 6 for(int i = 1; i <= p; i++) 7 fac[i] = fac[i - 1] * i % p; 8 } 9 ll pow(ll a, ll b, ll m) 10 { 11 ll ans = 1; 12 a %= m; 13 while(b) 14 { 15 if(b & 1)ans = (ans % m) * (a % m) % m; 16 b /= 2; 17 a = (a % m) * (a % m) % m; 18 } 19 ans %= m; 20 return ans; 21 } 22 ll inv(ll x, ll p)//x关于p的逆元,p为素数 23 { 24 return pow(x, p - 2, p); 25 } 26 ll C(ll n, ll m, ll p)//组合数C(n, m) % p 27 { 28 if(m > n)return 0; 29 return fac[n] * inv(fac[m] * fac[n - m], p) % p; 30 } 31 ll Lucas(ll n, ll m, ll p) 32 { 33 if(m == 0)return 1; 34 return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p; 35 }
3、n,m较大且p不为素数的时候
扩展Lucas定理:
1 #include2 using namespace std; 3 typedef long long ll; 4 const int maxn = 1e6 + 10; 5 const int mod = 1e9 + 7; 6 ll pow(ll a, ll b, ll m) 7 { 8 ll ans = 1; 9 a %= m; 10 while(b) 11 { 12 if(b & 1)ans = (ans % m) * (a % m) % m; 13 b /= 2; 14 a = (a % m) * (a % m) % m; 15 } 16 ans %= m; 17 return ans; 18 } 19 ll extgcd(ll a, ll b, ll& x, ll& y) 20 //求解ax+by=gcd(a, b) 21 //返回值为gcd(a, b) 22 { 23 ll d = a; 24 if(b) 25 { 26 d = extgcd(b, a % b, y, x); 27 y -= (a / b) * x; 28 } 29 else x = 1, y = 0; 30 return d; 31 } 32 ll mod_inverse(ll a, ll m) 33 //求解a关于模上m的逆元 34 //返回-1表示逆元不存在 35 { 36 ll x, y; 37 ll d = extgcd(a, m, x, y); 38 return d == 1 ? (m + x % m) % m : -1; 39 } 40 41 ll Mul(ll n, ll pi, ll pk)//计算n! mod pk的部分值 pk为pi的ki次方 42 //算出的答案不包括pi的幂的那一部分 43 { 44 if(!n)return 1; 45 ll ans = 1; 46 if(n / pk) 47 { 48 for(ll i = 2; i <= pk; i++) //求出循环节乘积 49 if(i % pi)ans = ans * i % pk; 50 ans = pow(ans, n / pk, pk); //循环节次数为n / pk 51 } 52 for(ll i = 2; i <= n % pk; i++) 53 if(i % pi)ans = ans * i % pk; 54 return ans * Mul(n / pi, pi, pk) % pk;//递归求解 55 } 56 57 ll C(ll n, ll m, ll p, ll pi, ll pk)//计算组合数C(n, m) mod pk的值 pk为pi的ki次方 58 { 59 if(m > n)return 0; 60 ll a = Mul(n, pi, pk), b = Mul(m, pi, pk), c = Mul(n - m, pi, pk); 61 ll k = 0, ans;//k为pi的幂值 62 for(ll i = n; i; i /= pi)k += i / pi; 63 for(ll i = m; i; i /= pi)k -= i / pi; 64 for(ll i = n - m; i; i /= pi)k -= i / pi; 65 ans = a * mod_inverse(b, pk) % pk * mod_inverse(c, pk) % pk * pow(pi, k, pk) % pk;//ans就是n! mod pk的值 66 ans = ans * (p / pk) % p * mod_inverse(p / pk, pk) % p;//此时用剩余定理合并解 67 return ans; 68 } 69 70 ll Lucas(ll n, ll m, ll p) 71 { 72 ll x = p; 73 ll ans = 0; 74 for(ll i = 2; i <= p; i++) 75 { 76 if(x % i == 0) 77 { 78 ll pk = 1; 79 while(x % i == 0)pk *= i, x /= i; 80 ans = (ans + C(n, m, p, i, pk)) % p; 81 } 82 } 83 return ans; 84 } 85 86 int main() 87 { 88 ll n, m, p; 89 while(cin >> n >> m >> p) 90 { 91 cout< endl; 92 } 93 return 0; 94 }