背景
最近发现Confluent公司在官网上发布了Kafka Streams教程,共有10节课,每节课给出了Kafka Streams的一个功能介绍。这个系列教程对于我们了解Kafka Streams还是很有帮助的。为什么要了解Kafka Streams?其实我一直觉得国内对于Flink有点过于迷恋了。大厂使用Flink尚自合理,毕竟数据量大且需要整套的集群管理调度监控功能。但一般的中小公司业务简单体量小,何必要费时费力地搭建一整套Flink集群。有很多简单的流处理业务场景使用Kafka Streams绰绰有余了,更何况Kafka Streams在设计上特别是在消息精确处理语义上一点都不必Flink差,只是它的定位不同罢了。如果你对Kafka Streams感兴趣,不妨关注一下这个系列。不过有点令人不爽的是,该教程使用Confluent Kafka作为开发环境进行演示,而且大量用到了Avro进行消息的序列化/反序列化。Confluent Kafka默认提供Schema Regstry、avro-console-producer和avro-console-consumer工具可以很方便地把消息转换成Avro格式并进行测试,但是如果你使用原生的Kafka(也就是社区版的Apache Kafka),这些功能要自行开发,非常地不方便。
鉴于此,我打算对照着这系列教程中的例子,使用Apache Kafka重新实现一遍。虽然有些科普,不过我觉得这是个很好的学习过程。需要注意的是,我不是使用Avro,而是使用Google的Protocol Buffer(下称protobuf)来进行演示。
演示功能说明
第一篇要演示的功能很简单,就是流处理的map功能:map函数或算子将一个消息流中的每条事件进行转换,变更成另一个格式或另一条新的事件。今天输入消息是表示电影的消息,格式如下:
{"id": 294, "title": "Die Hard::1988", "genre": "action"}
我们使用Kafka Streams实时地将每条消息中的title字段分开,将里面的发行年份字段提取出来,变成下面这样:
{"id":294,"title":"Die Hard","release_year":1988,"genre":"action"}
初始化项目
第一步是创建项目文件夹。在执行这步前,你需要安装并配置好Java环境和Gradle环境。Gradle是用于构建Java工程用的,下载地址是:https://gradle.org/。然后执行下列命令去创建项目:
mkdir movie-streams/
cd movie-streams/
配置项目
在movie-streams目录下,创建build.gradle文件——该文件是Gradle的项目配置文件,类似于Maven的pom.xml。该文件内容如下:
buildscript {
repositories {
jcenter()
}
dependencies {
classpath 'com.github.jengelman.gradle.plugins:shadow:4.0.2'
}
}
plugins {
id 'java'
id "com.google.protobuf" version "0.8.10"
}
apply plugin: 'com.github.johnrengelman.shadow'
repositories {
mavenCentral()
jcenter()
maven {
url 'http://packages.confluent.io/maven'
}
}
group 'huxihx.kafkastreams'
sourceCompatibility = 1.8
targetCompatibility = '1.8'
version = '0.0.1'
dependencies {
implementation 'com.google.protobuf:protobuf-java:3.0.0'
implementation 'org.slf4j:slf4j-simple:1.7.26'
implementation 'org.apache.kafka:kafka-streams:2.3.0'
implementation 'com.google.protobuf:protobuf-java:3.9.1'
testCompile group: 'junit', name: 'junit', version: '4.12'
}
protobuf {
generatedFilesBaseDir = "$projectDir/src/"
protoc {
artifact = 'com.google.protobuf:protoc:3.0.0'
}
}
jar {
manifest {
attributes(
'Class-Path': configurations.compile.collect { it.getName() }.join(' '),
'Main-Class': 'huxihx.kafkastreams.MovieStreamApp'
)
}
}
shadowJar {
archiveName = "kstreams-transform-standalone-${version}.${extension}"
}
其中比较关键的是:首先我们要引入Gradle的shadow插件,用于fat jar打包;其次,我们指定了Gradle的protobuf插件用于帮助我们将*.proto文件自动编译成Java类。保存上面的文件,然后执行下列命令下载Gradle的wrapper套件:
gradle wrapper
之后在movie-streams目录下创建一个名为configuration的文件夹用于保存我们的参数配置文件:
mkdir configuration
同时创建配置文件dev.properties,内容如下:
application.id=movie-transformer
bootstrap.servers=localhost:9092
input.topic.name=raw-movies
input.topic.partitions=1
input.topic.replication.factor=1output.topic.name=movies
output.topic.partitions=1
output.topic.replication.factor=1
该文件设置了我们要连接的Kafka集群信息以及输入topic和输出topic详情。
创建消息Schema
下一步是创建输入消息和输出消息的schema。在movie-streams下执行命令创建保存schema的文件夹:
mkdir -p src/main/proto
然后分别创建raw-movie.proto和parsed-movie.proto文件,内容分别是:
syntax = "proto3";
package huxihx.kafkastreams.proto;
message RawMovie {
uint64 id = 1;
string title = 2;
string genre = 3;
}
syntax = "proto3";
package huxihx.kafkastreams.proto;
message Movie {
uint64 id = 1;
string title = 2;
uint32 release_year = 3;
string genre = 4;
}
文件内容是标准的protobuf语法,定义了电影事件的id、title、release_year和genre信息。保存这两个文件,在movie-streams下之后运行gradlew命令将它们自动编译成Java类:
./gradlew build
此时,你应该可以在src/main/java/huxihx/kafkastreams/proto下看到生成的两个Java类:ParsedMovie和RawMovieOuterClass。
创建Serdes
这一步我们为RawMovie和Movie消息创建各自的Serdes。所谓的Serdes是serializer和deserializer的合称。Kafka Streams程序在读取消息时需要用到Serdes中的deserializer将消息字节序列转换成对应的Java对象实例,而生产消息时则会用到Serdes的serializer将Java对象实例转换成字节序列。由于我们使用protobuf框架进行序列化和反序列化,因此我们需要创建支持protobuf的Serdes。
在movie-streams下执行:
mkdir -p src/main/java/huxihx/kafkastreams/serdes
然后在新创建的serdes文件夹下创建ProtobufSerializer.java:
package huxihx.kafkastreams.serdes; import com.google.protobuf.MessageLite; import org.apache.kafka.common.serialization.Serializer; public class ProtobufSerializerimplements Serializer { @Override public byte[] serialize(String topic, T data) { return data == null ? new byte[0] : data.toByteArray(); } }
然后创建ProtobufDeserializer.java:
package huxihx.kafkastreams.serdes; import com.google.protobuf.InvalidProtocolBufferException; import com.google.protobuf.MessageLite; import com.google.protobuf.Parser; import org.apache.kafka.common.errors.SerializationException; import org.apache.kafka.common.serialization.Deserializer; import java.util.Map; public class ProtobufDeserializerimplements Deserializer { private Parser parser; @Override public void configure(Map configs, boolean isKey) { parser = (Parser ) configs.get("parser"); } @Override public T deserialize(String topic, byte[] data) { try { return parser.parseFrom(data); } catch (InvalidProtocolBufferException e) { throw new SerializationException("Failed to deserialize from a protobuf byte array.", e); } } }
最后创建ProtobufSerdes.java:
package huxihx.kafkastreams.serdes; import com.google.protobuf.MessageLite; import com.google.protobuf.Parser; import org.apache.kafka.common.serialization.Deserializer; import org.apache.kafka.common.serialization.Serde; import org.apache.kafka.common.serialization.Serializer; import java.util.HashMap; import java.util.Map; public class ProtobufSerdesimplements Serde { private final Serializer serializer; private final Deserializer deserializer; public ProtobufSerdes(Parser parser) { serializer = new ProtobufSerializer<>(); deserializer = new ProtobufDeserializer<>(); Map > config = new HashMap<>(); config.put("parser", parser); deserializer.configure(config, false); } @Override public Serializer serializer() { return serializer; } @Override public Deserializer deserializer() { return deserializer; } }
开发主流程
在src/main/java/huxihx/kafkastreams下创建MovieStreamApp.java文件:
package huxihx.kafkastreams; import huxihx.kafkastreams.proto.ParsedMovie; import huxihx.kafkastreams.proto.RawMovieOuterClass; import huxihx.kafkastreams.serdes.ProtobufSerdes; import org.apache.kafka.clients.admin.AdminClient; import org.apache.kafka.clients.admin.AdminClientConfig; import org.apache.kafka.clients.admin.NewTopic; import org.apache.kafka.clients.admin.TopicListing; import org.apache.kafka.common.serialization.Serdes; import org.apache.kafka.streams.KafkaStreams; import org.apache.kafka.streams.KeyValue; import org.apache.kafka.streams.StreamsBuilder; import org.apache.kafka.streams.StreamsConfig; import org.apache.kafka.streams.Topology; import org.apache.kafka.streams.kstream.Consumed; import org.apache.kafka.streams.kstream.Produced; import java.io.FileInputStream; import java.io.IOException; import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.concurrent.CountDownLatch; import java.util.stream.Collectors; public class MovieStreamApp { public static void main(String[] args) throws Exception { if (args.length < 1) { throw new IllegalArgumentException("Config file path must be specified."); } MovieStreamApp app = new MovieStreamApp(); Properties envProps = app.loadEnvProperties(args[0]); Properties streamProps = app.createStreamsProperties(envProps); Topology topology = app.buildTopology(envProps); app.preCreateTopics(envProps); final KafkaStreams streams = new KafkaStreams(topology, streamProps); final CountDownLatch latch = new CountDownLatch(1); Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") { @Override public void run() { streams.close(); latch.countDown(); } }); try { streams.start(); latch.await(); } catch (Exception e) { System.exit(1); } System.exit(0); } /** * 构建Streams拓扑对象实例 * * @param envProps * @return */ private Topology buildTopology(Properties envProps) { final StreamsBuilder builder = new StreamsBuilder(); final String inputTopic = envProps.getProperty("input.topic.name"); final String outputTopic = envProps.getProperty("output.topic.name"); builder.stream(inputTopic, Consumed.with(Serdes.String(), rawMovieProtobufSerdes())) .map((key, rawMovie) -> new KeyValue<>(rawMovie.getId(), parseRawMovie(rawMovie))) .to(outputTopic, Produced.with(Serdes.Long(), movieProtobufSerdes())); return builder.build(); } /** * 为Kafka Streams程序构建所需的Properties实例 * * @param envProps * @return */ private Properties createStreamsProperties(Properties envProps) { Properties props = new Properties(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, envProps.getProperty("application.id")); props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers")); props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass()); props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass()); return props; } /** * 预创建输入/输出topic,如果topic已存在则忽略 * * @param envProps * @throws Exception */ private void preCreateTopics(Properties envProps) throws Exception { Mapconfig = new HashMap<>(); config.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers")); String inputTopic = envProps.getProperty("input.topic.name"); String outputTopic = envProps.getProperty("output.topic.name"); try (AdminClient client = AdminClient.create(config)) { Collection existingTopics = client.listTopics().listings().get(); List topics = new ArrayList<>(); List topicNames = existingTopics.stream().map(TopicListing::name).collect(Collectors.toList()); if (!topicNames.contains(inputTopic)) topics.add(new NewTopic( envProps.getProperty("input.topic.name"), Integer.parseInt(envProps.getProperty("input.topic.partitions")), Short.parseShort(envProps.getProperty("input.topic.replication.factor")))); if (!topicNames.contains(outputTopic)) topics.add(new NewTopic( envProps.getProperty("output.topic.name"), Integer.parseInt(envProps.getProperty("output.topic.partitions")), Short.parseShort(envProps.getProperty("output.topic.replication.factor")))); if (!topics.isEmpty()) client.createTopics(topics).all().get(); } } /** * 加载configuration下的配置文件 * * @param fileName * @return * @throws IOException */ private Properties loadEnvProperties(String fileName) throws IOException { Properties envProps = new Properties(); try (FileInputStream input = new FileInputStream(fileName)) { envProps.load(input); } return envProps; } /** * 构建输出topic所需的Serdes * * @return */ private static ProtobufSerdes movieProtobufSerdes() { return new ProtobufSerdes<>(ParsedMovie.Movie.parser()); } /** * 构建输入topic所需的Serdes * * @return */ private static ProtobufSerdes rawMovieProtobufSerdes() { return new ProtobufSerdes<>(RawMovieOuterClass.RawMovie.parser()); } /** * 执行map逻辑提取release_year字段 * * @param rawMovie * @return */ private static ParsedMovie.Movie parseRawMovie(RawMovieOuterClass.RawMovie rawMovie) { String[] titleParts = rawMovie.getTitle().split("::"); String title = titleParts[0]; int releaseYear = Integer.parseInt(titleParts[1]); return ParsedMovie.Movie.newBuilder() .setId(rawMovie.getId()) .setTitle(title) .setReleaseYear(releaseYear) .setGenre(rawMovie.getGenre()) .build(); } }
编写测试Producer和Consumer
在src/main/java/huxihx/kafkastreams/tests/TestProducer.java和TestConsumer.java,内容分别如下:
package huxihx.kafkastreams.tests; import huxihx.kafkastreams.proto.RawMovieOuterClass; import huxihx.kafkastreams.serdes.ProtobufSerializer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Arrays; import java.util.List; import java.util.Properties; public class TestProducer { // 测试输入事件 private static final ListTEST_RAW_MOVIES = Arrays.asList( RawMovieOuterClass.RawMovie.newBuilder() .setId(294).setTitle("Die Hard::1988").setGenre("action").build(), RawMovieOuterClass.RawMovie.newBuilder() .setId(354).setTitle("Tree of Life::2011").setGenre("drama").build(), RawMovieOuterClass.RawMovie.newBuilder() .setId(782).setTitle("A Walk in the Clouds::1995").setGenre("romance").build(), RawMovieOuterClass.RawMovie.newBuilder() .setId(128).setTitle("The Big Lebowski::1998").setGenre("comedy").build()); public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", new ProtobufSerializer ().getClass()); try (final Producer producer = new KafkaProducer<>(props)) { TEST_RAW_MOVIES.stream() .map(rawMovie -> new ProducerRecord ("raw-movies", rawMovie)) .forEach(producer::send); } } }
package huxihx.kafkastreams.tests; import com.google.protobuf.Parser; import huxihx.kafkastreams.proto.ParsedMovie; import huxihx.kafkastreams.serdes.ProtobufDeserializer; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.Deserializer; import org.apache.kafka.common.serialization.LongDeserializer; import java.time.Duration; import java.util.Arrays; import java.util.HashMap; import java.util.Map; import java.util.Properties; public class TestConsumer { public static void main(String[] args) { // 为输出事件构造protobuf deserializer Deserializerdeserializer = new ProtobufDeserializer<>(); Map > config = new HashMap<>(); config.put("parser", ParsedMovie.Movie.parser()); deserializer.configure(config, false); Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("auto.offset.reset", "earliest"); KafkaConsumer consumer = new KafkaConsumer<>(props, new LongDeserializer(), deserializer); consumer.subscribe(Arrays.asList("movies")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofSeconds(1)); for (ConsumerRecord record : records) System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } }
测试
首先我们运行下列命令构建项目:
./gradlew shadowJar
然后启动Kafka集群,之后运行Kafka Streams应用:
java -jar build/libs/kstreams-transform-standalone-0.0.1.jar configuration/dev.properties
然后启动TestProducer发送测试事件:
java -cp build/libs/kstreams-transform-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer
最后启动TestConsumer验证Kafka Streams提取出了每条输入事件的release_year字段:
java -cp build/libs/kstreams-transform-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestConsumer
.......
offset = 0, key = 294, value = id: 294
title: "Die Hard"
release_year: 1988
genre: "action"offset = 1, key = 354, value = id: 354
title: "Tree of Life"
release_year: 2011
genre: "drama"offset = 2, key = 782, value = id: 782
title: "A Walk in the Clouds"
release_year: 1995
genre: "romance"offset = 3, key = 128, value = id: 128
title: "The Big Lebowski"
release_year: 1998
genre: "comedy"
总结
okay,第一篇的演示至此结束。总体上来看,Kafka Streams的转换操作算子map还是非常好用的。它能够实时地为每条入站消息执行你指定的逻辑。下一篇中我将演示另一个经典的transformation操作:filter。