- NLU-预训练模型-2018:Bert(二)【“Masked LM”缺点:①预训练与微调不一致;②忽略了掩码位置间的依赖关系】【复杂度:O(n^2·d);n:输入序列长度(规定最长512)】
u013250861
#NLP/词向量_预训练模型bert人工智能深度学习
五、BERT中的词嵌入1、为什么要使用BERT的嵌入使用BERT从文本数据中提取特征,即单词和句子的嵌入向量。我们可以用这些词和句子的嵌入向量做什么?首先,这些嵌入对于关键字/搜索扩展、语义搜索和信息检索非常有用。例如,如果你希望将客户的问题或搜索与已经回答的问题或文档化的搜索相匹配,这些表示将帮助准确的检索匹配客户意图和上下文含义的结果,即使没有关键字或短语重叠。其次,或许更重要的是,这些向量被
- 职场人必存!DeepSeek提示词大合集:周报速成、爆款文案、旅行攻略一键生成
阳光永恒736
AI工具人工智能deepseekAI提示词
引言:AI时代,为什么你的提示词总“词不达意”?“同样的AI工具,同事用DeepSeek半小时写完周报还附赠数据分析图,我却只会问‘帮我总结本周工作’?”这可能是多数职场人的真实写照。AI工具的能力边界早已超越基础问答,但90%的用户仍停留在“无效提问”阶段10。而真正拉开差距的,是一套精准的提示词指令库——它能将模糊需求转化为AI可执行的“操作指南”,让效率提升10倍不止。一、职场效率:从“加班
- 【DeepSeek干货总结】对不同类型学术内容进行润色的顶级提示词汇总!
AIWritePaper官方账号
DeepSeekPromptAIWritePaperAIWritePaperdeepseek深度学习人工智能AIGC论文润色
目录1.英文润色2.中文润色3.SCI润色4.润色Prompt汇总连贯性与句子逻辑提示词多参考版本提示词语法矫正提示词润色内容定位提示词修改建议提示词大家好这里是AIWritePaper官方账号!AIWritePaper官网AIWritePaper宝子们在写学术论文的过程中要想让DeepSeek发挥出最佳效能,尤其在进行文本润色时,精确和具体的提示词至关重要。很多宝子们在请求DeepSeek文本润
- 12.12【java exp4】react table全局搜索tailwindcss 布局 (Layout) css美化 3. (rowId: number
CQU_JIAKE
CQUCSjavascript前端react.js
reacttable创建一个下拉菜单,允许用户选择要搜索的列。创建一个输入框,用于输入搜索关键词。根据用户的选择,动态地应用过滤器到指定的列全局搜索importReactfrom'react';import{useTable,useFilters,useGlobalFilter,useSortBy,usePagination}from'react-table';//自定义过滤组件functionC
- 芒格的“思维格栅“:构建全面的投资分析框架
AGI大模型与大数据研究院
DeepSeekai
芒格的"思维格栅":构建全面的投资分析框架关键词:芒格、思维格栅、投资分析框架、跨学科思维、投资决策摘要:本文深入探讨了芒格的“思维格栅”理论及其在构建全面投资分析框架中的应用。首先介绍了“思维格栅”理论的背景和重要性,接着阐述了其核心概念与联系,包括跨学科思维的原理和架构。通过详细讲解核心算法原理和具体操作步骤,结合数学模型和公式进行举例说明,帮助读者理解如何运用这一理论进行投资分析。随后通过项
- DeepSeek多语言670亿参数高效创作解析
智能计算研究中心
其他
内容概要本文聚焦DeepSeek系列模型的核心技术突破与应用价值,通过解析其混合专家架构(MoE)的设计逻辑与670亿参数的规模化优势,揭示其在多语言处理、视觉语言理解及代码生成领域的创新表现。从技术特性出发,文章将对比OpenAI等主流模型的性能差异,探讨参数效率与计算资源优化如何支撑低成本、高精度的内容生成场景,例如学术论文写作、智能选题规划及SEO关键词拓展。同时,通过分析DeepSeekP
- 零基础到网络安全工程师
幼儿园扛把子\
web安全安全
爆肝!三个月从零基础到网络安全工程师:2025年黑客技术实战指南(附工具包+100G资源)网络安全攻防示意图|数据来源:CSDN技术社区关键词:网络安全、红队实战、CTF竞赛、渗透测试、漏洞挖掘一、为什么90%的人学不会黑客技术?这3个误区正在毁掉你!1.错误认知:把"黑客"等同于"攻击者"真相:网络安全法实施后,合规的渗透测试工程师(白帽黑客)已成国家战略人才,平均月薪25K+案例:某学员通过挖
- 泛目录程序:2025快云站群程序的SEO优化功能
云惠科技
大数据泛目录
快云站群程序的SEO优化功能围绕搜索引擎算法设计,具体包含以下核心模块:1.关键词智能布局密度检测与优化:自动分析内容关键词密度,建议合理区间(2%-8%),避免堆砌或遗漏;多词策略支持:可针对单篇内容设置主关键词+长尾词组合,覆盖更多搜索场景;标题/摘要自动生成:根据关键词智能生成高点击率的标题和Meta描述,提升搜索展示效果。2.内链自动化系统内容关联推荐:基于语义分析,自动在文章中插入相关内
- 个人AI助手的未来:Yi AI开源系统助力快速搭建
耶耶Norsea
网络杂烩人工智能开源
摘要YiAI推出了一站式个人AI助手平台解决方案,助力用户快速搭建专属AI助手。该平台采用全套开源系统,涵盖前端应用、后台管理及小程序功能,并基于MIT协议开放使用。同时,平台集成了本地RAG方案,利用Milvus与Weaviate向量数据库支持本地部署,为用户提供高效、灵活的数据处理能力。关键词个人AI助手,快速搭建,开源系统,本地RAG,向量数据库一、YiAI开源系统概述1.1个人AI助手的发
- CSS3背景与渐变
天涯学馆
大前端&移动端全栈架构css3前端css
背景与渐变background-sizebackground-size属性用于设置背景图像的尺寸。您可以指定绝对或相对单位,或者使用关键词来控制背景图像在元素背景区域中的大小。.element{background-size:[length|percentage|cover|contain]|[length|percentage][length|percentage]|auto|inherit;}
- 基于STM32设计的自动追光系统(系统资料)
嵌入式大圣
大圣单片机项目合集stm32嵌入式硬件单片机
基于STM32设计的自动追光系统摘要:基于STM32设计的自动追光系统主要由光敏采集电路、单片机核心板电路和步进电机控制电路构成。通过光敏电阻采集环境光强信息,经STM32单片机处理后,控制步进电机转动,实现对光源的自动追踪。该系统具有响应速度快、追踪精度较高等优点,可应用于太阳能发电、智能照明等领域,为相关场景提供高效的光资源利用方案。关键词:STM32;自动追光系统;光敏电阻;步进电机目录基于
- 基于FSK调制的多点无线数据传输系统设计(含有源码)
妄北y
竞赛项目研究实战汇集mongodb单片机嵌入式硬件
摘要本系统设计了一种基于FSK(频移键控)调制的多点无线数据传输系统,主要由一个主接收机和两个发射机组成。系统以89S52单片机为核心,负责数据的编码、解码及控制功能,采用FSK调制方式实现文字和语音数据的无线传输。系统配备LCD显示屏,支持数据的实时显示与存储,具备多功能传输与存储能力。本文详细介绍了系统的设计方案、硬件模块实现、软件设计及调试过程,并展示了系统的测试结果与未来应用前景。关键词:
- 量化投资中的投资组合风险溢价模型
云策量化
量化投资量化交易量化软件量化炒股QMT量化交易PTrade量化软件量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》量化投资中的投资组合风险溢价模型在量化投资的世界里,风险和回报总是如影随形。投资者们就像是在大海中航行的船长,既要寻找宝藏,又要避开暗礁。今天,我们就来聊聊量化投资中的一个关键工具——投资组合风险溢价模型,它就像是船长的罗盘,帮助我们在风险和回报之间找到平衡。引言:风险与回报的舞蹈在量化投资中,我们经常听到“风险溢价”这个词。
- Electron对接语音唤醒Windows SDK
蚂蚁二娘
electronwindowsc++
一、项目主要依赖vuevue-cli-plugin-electron-builderelectronffi-napinodejs操作c++的dll库ref-napic++类型转换js-audio-recorder录音插件二、下载SDK设置好唤醒词后,下载windowsSdk,项目需要/bin目录下的msc_x64.dll和msc.dll(分别是64位和32位的dll,按需使用),以及/bin/ms
- 21.7 ChatGLM3-6B私有化部署实战:2小时快速搭建200 QPS高可用模型服务
少林码僧
AI大模型应用实战专栏人工智能gpt语言模型
ChatGLM3-6B私有化部署实战:2小时快速搭建200QPS高可用模型服务ChatGLM3-6B私有化部署实战指南关键词:ChatGLM3-6B部署,私有化模型服务,性能优化,容器化部署,API服务封装1.部署环境准备与硬件规划ChatGLM3-6B私有化部署需要充分考虑算力资源与软件生态的适配性,以下是推荐配置方案:
- 使用Java爬虫根据关键词获取Shopee商品列表?
小爬虫程序猿
java爬虫开发语言
在跨境电商领域,Shopee作为东南亚及中国台湾地区领先的电商平台,拥有海量的商品信息。无论是进行市场调研、数据分析,还是寻找热门商品,根据关键词获取Shopee商品列表都是一项极具价值的任务。然而,手动浏览和整理这些信息显然是低效且容易出错的。幸运的是,通过编写Java爬虫程序,我们可以高效地完成这一任务。本文将详细介绍如何利用Java爬虫根据关键词获取Shopee商品列表,并提供完整的代码示例
- 21.11 《ChatGLM3-6B+Gradio工业级落地:多模态交互+60%性能优化,手把手实现生产部署》
少林码僧
AI大模型应用实战专栏人工智能gpt语言模型性能优化交互
《ChatGLM3-6B+Gradio工业级落地:多模态交互+60%性能优化,手把手实现生产部署》关键词:ChatGLM3-6B应用开发,Gradio界面集成,模型交互优化,Web服务容器化,多模态输入支持使用Gradio赋能ChatGLM3-6B图形化界面通过Gradio实现大模型服务的可视化交互,是生产级AI应用落地的关键环节。本节将深入解析如何构建适配ChatGLM3-6B的工业级交互界面。
- 推特关键词爬虫Python实现最新版(2025.2.20)
才华是浅浅的耐心
爬虫python开发语言
引言随着各类自媒体平台的兴起,数据挖掘和分析变得尤为重要。推特作为全球最大的自媒体平台,越来越来越多的人需要通过爬取其内容进行分析。然后自从马斯克接手推特之后,推特api不可再用,推特的反爬力度也在逐渐增强。今天小编就分享一个推特爬虫的教程。描述这篇文章主要通过关键词爬取帖子内容信息以及帖子作者主页相关信息,用户也可根据自己需要的时间段进行筛选。推特可支持筛选多种语言,我这里先展示中文和英文的。字
- 力扣hot100——49.字母异位词分组
码凡
leetcode算法
49.字母异位词分组给你一个字符串数组,请你将字母异位词组合在一起。可以按任意顺序返回结果列表。字母异位词是由重新排列源单词的所有字母得到的一个新单词。示例1:输入:strs=["eat","tea","tan","ate","nat","bat"]输出:[["bat"],["nat","tan"],["ate","eat","tea"]]示例2:输入:strs=[""]输出:[[""]]示例3:
- 数据库管理-第304期 业绩?有绩无业!(20250320)
胖头鱼的鱼缸(尹海文)
数据库数据库oracle
数据库管理304期2025-03-20数据库管理-第304期业绩?有绩无业!(20250320)1词解2跑偏3活动预告总结数据库管理-第304期业绩?有绩无业!(20250320)作者:胖头鱼的鱼缸(尹海文)OracleACEPro:DatabasePostgreSQLACEPartner10年数据库行业经验拥有OCM11g/12c/19c、MySQL8.0OCP、Exadata、CDP等认证墨天
- 使用Deepseek书写一篇综述论文,如何提示?
学术乙方
小知识经验分享
使用DeepSeek撰写综述论文时,可以通过以下提示和步骤来高效完成任务:明确研究主题与范围在开始撰写之前,首先需要明确研究主题、文献综述的时间跨度、地理范畴和文献类型。这有助于聚焦研究方向,避免偏离主题。制定详细的提示词提示词的设计是高效利用DeepSeek的关键。可以参考以下模板:研究背景与现状:请帮我梳理XXX领域的研究背景与现状,包括国内外的主要研究成果和研究热点。文献筛选与阅读:请帮我筛
- Python-有效字母异位词
m0_37763377
python哈希算法算法数据结构
一、什么是字母异位词字母异位词是指由相同字母组成但排列顺序不同的单词。例如,"eat"、"tea"和"ate"都是字母异位词,因为它们由相同的字母组成,只是排列顺序不同。二、思路(一)暴力解法这里可以用两层循环来判断2个字符串的元素是否一样,显然时间复杂度为O(n²),在这里大家可以自己写一下,文章就不再提供演示。(二)哈希表解法1.什么是哈希表?哈希表(HashTable),也称为散列表,是
- 从关键词到权重:TF-IDF算法解析
多巴胺与内啡肽.
机器学习tf-idf算法机器学习
文章目录前言一、TF-IDF:关键词的“价值”评估师二、TF-IDF的计算:拆解关键词的“价值”三、TF-IDF的应用:从搜索引擎到文本挖掘四、代码实现:从《红楼梦》中提取核心关键词1、分卷处理1.1代码功能1.2代码实现1.2.1、读取文件1.2.2逐行处理1.2.3.关闭文件2、分词与停用词过滤2.1代码功能2.2代码实现2.2.1读取分卷内容构建DataFrame:2.2.2分词与停用词过滤
- AIGC时代品牌突围战:10招玩转DeepSeek内容推荐(深度扩展版)
白雪讲堂
人工智能大数据机器学习
一、认知革命:从SEO到GEO的生死迭代案例对比:传统SEO困境:某家电品牌2023年投入200万SEO优化,关键词排名TOP3但流量下降42%(SEMrush数据)GEO突破案例:某母婴品牌通过结构化数据改造,AI推荐量从日均300次飙升至1.2万次(来源:DeepSeek官方案例库)实战要点:内容形态改造:将产品参数表升级为JSON-LD格式(某手机品牌实现参数类问题100%引用)流量分配逻辑
- 每日实战:python爬虫之网页跳转-以某博为例
代码CC
python爬虫python爬虫pandas开发语言
一、项目背景与核心需求通过逆向分析微博热榜接口,实现实时热搜数据抓取,重点解决:话题跳转链接参数缺失问题页面数据清洗规范化处理多维度数据采集存储二、网页跳转爬虫实现原理2.1跳转链接生成逻辑原始热搜词→"雷军刚知道柯洁定了SU7Ultra"处理流程:1.添加话题标识→#雷军刚知道柯洁定了SU7Ultra#2.URL编码→%23雷军刚知道柯洁定了SU7Ultra%233.添加搜索参数→&t=31生成
- Vue.js + Element UI 实战:手把手教你实现评论关键词过滤功能,新手必学!》 《前端开发必备技能:Vue 2 + Element UI 实现评论敏感词过滤,完整代码分享》 《新手友
南北极之间
vue.jsui前端敏感词关键词敏感词过滤
效果图【定制化开发服务,让您的项目领先一步】如有需求,直接私信留下您的联系方式。谢谢。我的邮箱:
[email protected]以下是基于Vue2和ElementUI的评论关键词过滤功能实现,使用CDN引入Vue和ElementUI,方便在浏览器中直接预览。在线预览:Vue2+ElementUI实现评论关键词过滤功能目录需求场景技术选型实现步骤引入Vue2和ElementUI创建评论界面实现关键
- 【H2O2 | 软件开发】前端深拷贝的实现
过期的H2O2
【H2O2】全栈面试题javascript开发语言ecmascript前端
目录前言开篇语准备工作正文概述JSON方法递归其他结束语前言开篇语本系列为短篇,每次讲述少量知识点,无需一次性灌输太多的新知识点。该主题文章主要是围绕前端、全栈开发相关面试常见问题撰写的,希望对诸位有所帮助。如果您需要为面试八股文做准备,笔者建议重点关注加粗强调部分,它们是概念中的关键词。准备工作软件:【参考版本】VisualStudioCode系统版本:Win10/11正文概述概括地来说,前端实
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 深入解析BM25:LangChain中的高效检索算法
AI Agent首席体验官
langchain算法
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- 从经典到现代:BM25在LangChain中的应用与优势
AI Agent首席体验官
langchain
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><