主成分分析(PCA)(转)

主成分分析(Principal Component Analysis,简称PCA)

          它是一种通用的降维工具。在我们处理高维数据的时候,为了能降低后续计算的复杂度,在“预处理”阶段通常要先对原始数据进行降维

本质上讲,PCA就是将高维的数据通过线性变换投影到低维空间上去,但这个投影可不是随便投投,要遵循一个指导思想,那就是:找出最能够代表原始数据的投影方法。这里怎么理解这个思想呢?“最能代表原始数据”希望降维后的数据不能失真,也就是说,被PCA降掉的那些维度只能是那些噪声或是冗余的 数据

主成分分析(PCA)(转)_第1张图片

 噪声: 我们常说“噪音污染”,意思就是“噪声”干扰我们想听到的真正声音。同样,假设样本中某个主要的维度A,它能代表原始数据,是“我们真正想听到的东西”,它本身含有的“能量”(即该维度的方差)本来应该是很大的,但由于它与其他维度有那么一些千丝万缕的相关性,受到这些个相关维度的干扰,它的能量被削弱了,我们就希望通过PCA处理后,使维度A与其他维度的相关性尽可能减弱,进而恢复维度A应有的能量,让我们“听的更清楚”!

冗余:冗余也就是多余的意思,就是有它没它都一样,放着就是占地方,同样,假如样本中有些个维度,在所有的样本上变化不明显(极端情况:在所有的样本中该维度都等于同一个数),也就是说该维度上的方差接近于零,那么显然它对区分不同的样本丝毫起不到任何作用,这个维度即是冗余的,有它没它一个样,所以PCA应该去掉这些维度。

降噪”的目的就是使保留下来的维度间的相关性尽可能小,而“去冗余”的目的就是使保留下来的维度含有的“能量”即方差尽可能大。那首先的首先,我们得需要知道各维度间的相关性以及个维度上的方差啊!那有什么数据结构能同时表现不同维度间的相关性以及各个维度上的方差呢?自然是非协方差矩阵莫属

协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间。协方差矩阵的主对角线上的元素是各个维度上的方差(即能量),其他元素是两两维度间的协方差(即相关性)。我们要的东西协方差矩阵都有了,先来 看“降噪”,让保留下的不同维度间的相关性尽可能小,也就是说让协方差矩阵中非对角线元素都基本为零。

达到这个目的的方式自然不用说,线代中讲的很明确——矩阵对角化。而对角化后得到的矩阵,其对角线上是协方差矩阵的特征值,它还有两个身份:首先,它还是各个维度上的新方差;其次,它是各个维度本身应该拥有的能量(能量的概念伴随特征值而来)。这也就是我们为何在前面称“方差”为“能量”的原因。也许第二点可能存在疑问,但我们应该注意到这个事实,通过对角化后,剩余维度间的相关性已经减到最弱,已经不会再受“噪声”的影响了,故此时拥有的能量应该比先前大了。看完了“降噪”,我们的“去冗余”还没完呢。对角化后的协方差矩阵,对角线上较小的新方差对应的就是那些该去掉的维度。

所以我们只取那些含有较大能量(特征值)的维度,其余的就舍掉即可。PCA的本质其实就是对角化协方差矩阵

主成分分析(PCA)(转)_第2张图片

1. 形成样本矩阵,样本中心化 

2. 计算样本矩阵的协方差矩阵  

3. 对协方差矩阵进行特征值分解,选取最大的p个特征值对应的特征向量组成投影矩阵 

 4. 对原始样本矩阵进行投影,得到降维后的新样本矩阵

你可能感兴趣的:(主成分分析(PCA)(转))