使用tensorflow实现矩阵分解方式

采用最小二乘的求逆方法在大部分情况下是低效率的。特别地,当局镇非常大时效率更低。另外一种实现方法是矩阵分解,此方法使用tensorflow内建的Cholesky矩阵分解法。Cholesky矩阵分解法把一个矩阵分解为上三角矩阵和下三角矩阵,L和L'。求解Ax=b,改写成LL'=b。首先求解Ly=b,然后求解L'x=y得到系数矩阵。

1. 导入编程库,初始化计算图,生成数据集。接着获取矩阵A和b。

>>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> import tensorflow as tf

>>> from tensorflow.python.framework import ops
>>> ops.reset_default_graph()

>>> sess=tf.Session()

>>> x_vals=np.linspace(0,10,100)

>>> y_vals=x_vals+np.random.normal(0,1,100)

>>> x_vals_column=np.transpose(np.matrix(x_vals))
>>> ones_column=np.transpose(np.matrix(np.repeat(1,100)))
>>> A=np.column_stack((x_vals_column,ones_column))
>>> b=np.transpose(np.matrix(y_vals))
>>> A_tensor=tf.constant(A)

>>> b_tensor=tf.constant(b)

2. 找到方阵的Cholesky矩阵分解。

注意:tensorflow的cholesky()函数仅仅返回矩阵分解的下三角矩阵,因为上三角矩阵是下三角矩阵的转置矩阵。

>>> tA_A=tf.matmul(tf.transpose(A_tensor),A_tensor)
>>> L=tf.cholesky(tA_A)
>>> tA_b=tf.matmul(tf.transpose(A_tensor),b)
>>> sol1=tf.matrix_solve(L,tA_b)

>>> sol2=tf.matrix_solve(tf.transpose(L),sol1)

3. 抽取系数

>>> solution_eval=sess.run(sol2)
>>> solution_eval
array([[1.01379067],
    [0.02290901]])
>>> slope=solution_eval[0][0]
>>> y_intercept=solution_eval[1][0]
>>> print('slope:'+str(slope))
slope:1.0137906744047482
>>> print('y_intercept:'+str(y_intercept))
y_intercept:0.022909011828880693
>>> best_fit=[]
>>> for i in x_vals:
...  best_fit.append(slope*i+y_intercept)
...
>>> plt.plot(x_vals,y_vals,'o',label='Data')
[]
>>> plt.plot(x_vals,best_fit,'r-',label='Best fit line',linewidth=3)
[]
>>> plt.legend(loc='upper left')


>>> plt.show()

使用tensorflow实现矩阵分解方式_第1张图片

以上这篇使用tensorflow实现矩阵分解方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的:(使用tensorflow实现矩阵分解方式)