题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1989
题意:给出一个字符串,m个操作:1,修改其中一个字符串,2,询问 [a, b] 是不是回文串。数据范围10^5。
如何快速判断字符串是不是回文串,可以用到多项式Hash。假设一个串s,那么字串s[i, j]的Hash值就是H[i, j]=s[i]+s[i+1]*x+s[i+2]*(x^2)+...+s[j]*(x^(i-j))。由于只有小写字母,因此x取27。但是H[i, j]这会很大,我们取模就可了,可以把变量类型设为unsigned long long, 那么自动溢出就相当于模2^64了。对于不同串但是Hash相同的情况,这种情况的概率是非常小的,通常可以忽略,当然我们也可以对x取多次值,求出不同情况下的Hash值。然后我们就可以用线段树或者树状数组来维护这个和了,复杂度O(nlogn)。
1 //STATUS:C++_AC_140MS_2777KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=100010; 37 const int INF=0x3f3f3f3f; 38 const int MOD=95041567,STA=8000010; 39 const LL LNF=1LL<<60; 40 const double EPS=1e-8; 41 const double OO=1e15; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 ULL bit[N],c[N][2]; 59 char s[N]; 60 int n,len; 61 62 inline int lowbit(int x) 63 { 64 return x&(-x); 65 } 66 67 void update(int x,ULL val,int flag) 68 { 69 while(x<=len){ 70 c[x][flag]+=val; 71 x+=lowbit(x); 72 } 73 } 74 75 ULL sum(int x,int flag) 76 { 77 ULL ret=0; 78 while(x){ 79 ret+=c[x][flag]; 80 x-=lowbit(x); 81 } 82 return ret; 83 } 84 85 int main() 86 { 87 // freopen("in.txt","r",stdin); 88 int i,j,w,L,R; 89 char op[20],ch; 90 bit[0]=1; 91 for(i=1;i<N;i++)bit[i]=bit[i-1]*27; 92 while(~scanf("%s",s)) 93 { 94 len=strlen(s); 95 mem(c,0); 96 for(i=0;i<len;i++){ 97 update(i+1,(s[i]-'a'+1)*bit[i],0); 98 update(i+1,(s[len-i-1]-'a'+1)*bit[i],1); 99 } 100 scanf("%d",&n); 101 while(n--){ 102 scanf("%s",op); 103 if(op[0]=='p'){ 104 scanf("%d%d",&L,&R); 105 ULL a=(sum(R,0)-sum(L-1,0))*bit[len-R]; 106 ULL b=(sum(len-L+1,1)-sum(len-R,1))*bit[L-1]; 107 if(a==b)printf("Yes\n"); 108 else printf("No\n"); 109 } 110 else { 111 scanf("%d %c",&w,&ch); 112 update(w,(ch-s[w-1])*bit[w-1],0); 113 update(len-w+1,(ch-s[w-1])*bit[len-w],1); 114 s[w-1]=ch; 115 } 116 } 117 } 118 return 0; 119 }