combination sum && combination sum II

1.Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

The same repeated number may be chosen from candidates unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • The solution set must not contain duplicate combinations.

Example 1:

Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
  [7],
  [2,2,3]
]

Example 2:

Input: candidates = [2,3,5], target = 8,
A solution set is:
[
  [2,2,2,2],
  [2,3,3],
  [3,5]
]

我的解答:

class Solution {
    
public:
    vectorint>> combinationSum(vector<int>& candidates, int target) {
        vectorint>> res;
        vector<int> temp;
        //if (candidates.size() < 1)return res;
        sort(candidates.begin(),candidates.end());
        combinationSum(candidates,res,temp,target,0);
        return res;
    }
    
private:
    void combinationSum(vector<int>& candidates, vectorint>> &res,vector<int> &temp, int target,int begin)
    {
        if (!target)
        {
            res.push_back(temp);
            return ;
        }
        // 这里要注意了,&& 两边应该先判断 i ,再判断candidates[i],否则将导致数组越界!!!
        for (int i = begin; i != candidates.size() && target >= candidates[i]; ++i)
        {
            temp.push_back(candidates[i]);
            combinationSum(candidates,res,temp,target - candidates[i],i);
            temp.pop_back();
        }
    }
};

其中有一个要注意的地方:

 && 运算符:先判断左边,只有左边为真,才计算右边

 || 运算符:先判断左边,只有左边为假,才计算右边

 

 

2.Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

Each number in candidates may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • The solution set must not contain duplicate combinations.

Example 1:

Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]

Example 2:

Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
  [1,2,2],
  [5]
]

class Solution {
public:
    vectorint>> combinationSum2(vector<int>& candidates, int target) {
        vectorint>> res;
        vector<int> candi;
        sort(candidates.begin(),candidates.end());
        findNext(candidates,target,0,candi,res);
        return res;
    }
    
    void findNext(vector<int> &candidates, int target,int begin,vector<int> &candi,vectorint>> &res)
    {
        if (!target)
        {
            res.push_back(candi);
            return;
        }
        for (int i = begin;i < candidates.size() && target >= candidates[i];++i)
        {
            if (i == begin || candidates[i] != candidates[i - 1]){ 
                candi.push_back(candidates[i]);
                findNext(candidates,target - candidates[i],i+1,candi,res);
                candi.pop_back();
            }

        }
    }
};

 

你可能感兴趣的:(combination sum && combination sum II)