一、前言
近期疫情严重,身为社畜的我只能在家中继续钻研技术了。之前写过一篇关于搭建FIFO验证平台的博文,利用SV的OOP特性对FIFO进行初步验证,但有很多不足之处,比如结构不够规范、验证组件类不独立于DUT等问题。此次尝试验证更复杂的IP,并利用SV的更多高级特性来搭建层次化验证平台。
二、APB_I2C IP概述
实践出真知,于是在opencores网站上下载了个APB_I2C的IP核,便着手展开验证工作。第一步是理清楚这个IP的整体功能、引脚作用以及顶层结构。整体功能从模块名称便可得知是带有APB总线接口的I2C_master。要了解引脚作用与时序,直接截取SPEC上的示意图查看:
APB_WRITE:
APB_READ:
I2C_PROTOCOL:
接口和协议这里就不细说了,感兴趣的朋友查找相关的资料。至于顶层结构这方面,最好还是交给工具方便点。无奈回家没有带回我的虚拟机硬盘,只能下载个WINDOW版本的EDA工具了。本文使用QuestaSim,原理图如下:
很容易看出该模块顶层包含APB接口模块APB、分别用于缓存发送和接收数据的FIFO_TX和FIFO_RX,以及I2C协议转换模块I2X_INTERNAL_RX_TX。master通过APB总线访问该IP核内部的数据缓存区和配置寄存器,无需关注内部实现。
除了这几个方面,配置寄存器的访问也非常重要。IP核必须做出正确的配置和使能才可以按照需要正常工作。配置寄存器见下表:
三、QuestaSim常用指令
QuestaSim工具的WINDOWS/LINUX版本很容易下载到,和Modelsim的主要区别是对SV UVM的支持性较好,这一点非常符合本文的意愿。但仿真过程中一次次点击鼠标很麻烦,只好学习学习操作命令了,写个脚本配合SV实现自动化仿真。以下是在官方文档user manual和tutorial中截取的常用指令及解释。
1 Compile the source files.
vlog gates.v and2.v cache.v memory.v proc.v set.v top.v
2 Use the vopt command to optimize the design with full visibility into all design units
vopt +acc
The +acc argument enables full visibility into the design for debugging purposes. The -oargument is required for naming the optimized design object. The -debugdb argument collects combinatorial and sequential logic data into the work library.
3 Use the optimized design name to load the design with the vsim command:
vsim testcounter_opt -debugdb
4 set WildcardFilter "Variable Constant Generic Parameter SpecParam Memory
Assertion Endpoint ImmediateAssert"
With this command, you remove “CellInternal” from the default list of Wildcard filters.
This allows all signals in cells to be logged by the simulator so they will be visible in the
debug environment.
5 Add Wave *
6 add log /*
This will provide the historic values of the events of interest plus its drivers
7 run 500
一并给出我的do脚本文件:
1 #quit -sim 2 3 set filename testbench 4 5 vlog *.v *.sv 6 7 vopt -debugdb +acc work.$filename -o top_opt1 8 vsim -debugdb top_opt1 9 10 #vsim -vopt -debugdb +acc work.$filename 11 12 # change WildcardFilter variables 13 set WildcardFilter "Variable Constant Generic Parameter SpecParam Memory Assertion Cover Endpoint ScVariable ImmediateAssert VHDLFile" 14 15 add wave /$filename/* 16 add log -r /* 17 18 run 1000ns
四、搭建验证环境
这一节是本文的核心内容了。通用的验证环境的结构和组件如图:
Stimulus将测试激励送入待测试模块DUT,Monitor观察响应并发送给检Checker。遇到复杂的设计还需要设计Reference model,进而对比实际响应与黄金参考的响应区别。并且当Monitor无法简单直接地收集DUT响应时,还需要设计VIP来解析复杂的响应信号时序。这几天参照工具书和网上的教程视频,根据APB_I2C模块的特性构思出基本的验证环境。
APB_I2C模块并不复杂,所以没必要设计reference model。若想利用Monitor组件获取DUT响应需要解析I2C协议时序,这里编写个VIP来帮助它解析出有效数据,进而与Stimulus数据对比。Monitor因VIP的存在得到了很大程度上的简化,主要的功能为将等待触发事件发生后,将数据通过MAILBOX传输给Checker进行比较。
另外,为了让Stimulus脱离具体接口信号操作,建立Generator和Initiator类分别用于产生读写访问和将读写访问转换成读写操作对应的具体信号逻辑。为了实现OOP特性中的“细节隐藏”,建立配置类Config来配置验证环境,这里主要是配置Generator发送特定场景的读写请求。想要测试不同的功能特性,只需改动传入Config的参数即可。到此验证环境包含了Generator Initiator Monitor Checker Config五个验证组件,这里再建立Environment类将这些组件包在一起,方便调用方法。还是上图更直观些(有点丑,凑活看吧)
除了验证环境结构,好的代码结构也能极大提高平台的重用性。这里将所有类及对应的属性方法封装到Package components中,方便被import到testbench中。验证过程中用到的所有变量类型、参数放置在defines.sv中。
上代码:
1 package components; 2 `include "defines.sv" 3 4 apb_bus_t apb_bus; 5 logic event_tx_i2c_vld,event_tx_vld; 6 data_t data_tx_i2c; 7 logic data_tx_i2c_vld; 8 9 //Driver 10 class Initiator; 11 12 function void init_en(); 13 apb_bus.sel = 0; 14 apb_bus.wdata = 0; 15 apb_bus.addr = 0; 16 apb_bus.write = 0; 17 apb_bus.enable = 0; 18 endfunction 19 20 task write_oper(address_t address,data_t data_w); 21 @(posedge apb_bus.clk); 22 #1; 23 apb_bus.sel = 1; 24 apb_bus.write = 1; 25 apb_bus.wdata = data_w; 26 apb_bus.addr = address; 27 #T; 28 apb_bus.enable = 1; 29 #T; 30 init_en(); 31 endtask 32 33 task read_oper(address_t address,output data_t data_r); 34 @(posedge apb_bus.clk); 35 #1; 36 apb_bus.sel = 1; 37 apb_bus.write = 0; 38 apb_bus.addr = address; 39 #T; 40 apb_bus.enable = 1; 41 #T; 42 data_r = apb_bus.rdata; 43 init_en(); 44 endtask 45 endclass 46 47 typedef class Config; 48 //Generator 49 class Request; 50 data_t data_w; 51 data_t data_r; 52 Initiator initiator; 53 54 function new(); 55 data_w = 32'h1234_5678;//32'b0001_0010_0011_0100_0101_0110_0111_1000 56 initiator = new(); 57 clear_req(); 58 endfunction 59 60 function void clear_req(); 61 initiator.init_en(); 62 endfunction 63 64 task configure_reg(data_t data_reg_config,data_t data_reg_timeout); 65 initiator.write_oper(ADDR_REG_CONFIG,data_reg_config); 66 #(T*10); 67 initiator.write_oper(ADD_REG_TIMEOUT,data_reg_timeout); 68 endtask 69 70 task write_data(data_t data_w); 71 initiator.write_oper(ADDR_TX_FIFO,data_w); 72 endtask 73 74 task read_data(output data_t data_r); 75 initiator.read_oper(ADDR_RX_FIFO,data_r); 76 endtask 77 78 task req_run(Config req_config); 79 if(req_config.config_type == CONFIG_WR_DATA)begin 80 configure_reg(data_t'({30'd10,WRI_EN}),data_t'(32'd10000)); 81 write_data(data_w); 82 end 83 else if(req_config.config_type == CONFIG_RD_DATA)begin 84 configure_reg(data_t'({30'd10,RD_EN}),data_t'(32'd10000)); 85 read_data(data_r); 86 end 87 endtask 88 89 endclass:Request 90 91 class Config; 92 config_type_t config_type; 93 94 function new(config_type_t config_type=CONFIG_RD_DATA); 95 this.config_type = config_type; 96 endfunction 97 98 endclass:Config 99 100 class Monitor; 101 102 mailbox #(data_t) mb_data_i2c_tx; 103 mailbox #(data_t) mb_data_tx; 104 105 function new(mailbox mb1,mailbox mb2); 106 this.mb_data_i2c_tx = mb1; 107 this.mb_data_tx = mb2; 108 endfunction 109 110 task store_res_tx(); 111 wait(event_tx_i2c_vld); 112 #(T/2.0); 113 mb_data_i2c_tx.put(data_tx_i2c); 114 $display("store_res_tx:MAILBOX PUT:'h%h",data_tx_i2c); 115 endtask 116 117 task store_source_tx(); 118 wait(event_tx_vld); 119 #(T/2.0); 120 mb_data_tx.put(apb_bus.wdata); 121 $display("store_source_tx:MAILBOX PUT:'h%h",apb_bus.wdata); 122 endtask 123 124 task mon_run(); 125 fork 126 store_res_tx(); 127 store_source_tx(); 128 join 129 endtask 130 131 endclass:Monitor 132 133 class Checker; 134 uint cmp_cnt; 135 uint err_cnt; 136 data_t data_A,data_B; 137 mailbox #(data_t) mb_data_A,mb_data_B; 138 sim_res_t check_res; 139 140 function new(mailbox mb_A,mailbox mb_B); 141 cmp_cnt = 0; 142 err_cnt = 0; 143 this.mb_data_A = mb_A; 144 this.mb_data_B = mb_B; 145 endfunction 146 147 task collect_res(); 148 mb_data_A.get(this.data_A); 149 mb_data_B.get(this.data_B); 150 $display("MAILBOX GET:'h%h, 'h%h",this.data_A,this.data_B); 151 endtask 152 153 function sim_res_t compare(data_t dataA,data_t dataB); 154 if(dataA == dataB)begin 155 check_res = TRUE; 156 end 157 else begin 158 err_cnt ++; 159 check_res = FALSE; 160 end 161 return check_res; 162 endfunction 163 164 task check_run(); 165 sim_res_t check_res; 166 collect_res(); 167 check_res = compare(data_A,data_B); 168 if(check_res == TRUE) 169 $display("RUN PASS"); 170 else 171 $display("RUN FAIL"); 172 endtask 173 174 endclass:Checker 175 176 class Environment; 177 mailbox #(data_t) mb[2]; 178 Checker chk; 179 Request req; 180 Monitor monitor; 181 Config req_config; 182 183 function new(); 184 uint i; 185 req_config = new(); 186 req = new(); 187 foreach(mb[i]) 188 mb[i] = new(); 189 monitor = new(mb[0],mb[1]); 190 chk = new(mb[0],mb[1]); 191 endfunction 192 193 task env_run(); 194 fork 195 req.req_run(req_config); 196 monitor.mon_run(); 197 join 198 chk.check_run(); 199 endtask 200 201 endclass:Environment 202 203 endpackage
1 parameter T = 200; 2 parameter DATA_W = 32; 3 4 parameter bit [2-1:0] WRI_EN = 2'B01, 5 RD_EN = 2'B10; 6 7 typedef int unsigned uint; 8 //ADDR_REG_CONFIG = 'd8,//configure register 9 //ADD_REG_TIMEOUT = 'd12;//time before starting 10 typedef enum uint {ADDR_TX_FIFO = 'd0,ADDR_RX_FIFO = 'd4,ADDR_REG_CONFIG = 'd8,ADD_REG_TIMEOUT = 'd12} address_t; 11 typedef enum uint {TRUE,FALSE} sim_res_t; 12 typedef logic [DATA_W-1:0] data_t; 13 typedef struct { 14 logic clk; 15 logic write; 16 logic sel; 17 logic enable; 18 data_t wdata; 19 data_t rdata; 20 data_t addr; 21 logic ready; 22 logic slverr; 23 } apb_bus_t; 24 25 typedef enum {WR,RD} gen_t; 26 typedef enum {CONFIG_WR_DATA,CONFIG_RD_DATA} config_type_t;
1 `timescale 1ns/1ps 2 3 module i2c_slave 4 #(parameter DATA_WIDTH=32) 5 ( 6 input clk, 7 input scl, 8 inout sda, 9 input sda_master_en, 10 11 output logic [DATA_WIDTH-1:0] data_r,//master --> slave 12 output logic data_r_vld, 13 input [DATA_WIDTH-1:0] data_w, 14 input data_w_vld 15 ); 16 17 logic sda_r; 18 logic sda_neg,sda_pos; 19 logic cond_end,cond_start; 20 21 assign sda = sda_master_en ? 1'bz : 1'b0; 22 23 always@(posedge clk)begin 24 sda_r <= sda; 25 end 26 assign sda_neg = sda_r & ~sda; 27 assign sda_pos = ~sda_r & sda; 28 29 assign cond_start = sda_neg & scl; 30 assign cond_end = sda_pos & scl; 31 32 integer bit_index=0; 33 34 always 35 begin 36 data_r_vld = 0; 37 wait(cond_start); 38 $display("TRANSMISSION START"); 39 @(posedge scl); 40 while(bit_index < DATA_WIDTH)begin 41 @(negedge scl); 42 if (sda_master_en)begin 43 @(posedge clk); 44 data_r = {sda,data_r[DATA_WIDTH-1 -:DATA_WIDTH-1]}; 45 bit_index = bit_index+1; 46 $display("Get bit%d:%d",bit_index,sda); 47 end 48 end 49 data_r_vld = 1; 50 repeat(10) 51 @(posedge clk); 52 data_r_vld = 0; 53 $display("TRANSMISSION END"); 54 bit_index = 0; 55 end 56 57 endmodule
1 `timescale 1ns/1ps 2 3 import components::*; 4 5 6 module testbench; 7 8 logic pclk,presetn; 9 logic [DATA_W-1:0] paddr,pwdata,prdata; 10 logic pwrite,pselx,penable; 11 logic req_tx_vld; 12 13 wire pready,pslverr; 14 wire int_rx,int_tx; 15 wire sda_enable,scl_enable; 16 wire scl; 17 wire sda; 18 19 wire [DATA_W-1:0] data_r; 20 wire data_r_vld; 21 //apb_bus_t apb_bus; 22 23 assign pwrite = apb_bus.write; 24 assign pselx = apb_bus.sel; 25 assign penable = apb_bus.enable; 26 assign pwdata = apb_bus.wdata; 27 assign paddr = apb_bus.addr; 28 29 assign apb_bus.rdata = prdata; 30 assign apb_bus.ready = pready; 31 assign apb_bus.slverr = pslverr; 32 assign apb_bus.clk = pclk; 33 34 //logic event_tx_i2c_vld,event_tx_vld; 35 assign event_tx_vld = req_tx_vld == 1'b1; 36 assign event_tx_i2c_vld = data_r_vld == 1'b1; 37 //data_t data_tx_i2c; 38 //logic data_tx_i2c_vld; 39 assign data_tx_i2c = data_r; 40 assign data_tx_i2c_vld = data_r_vld; 41 42 43 initial begin 44 pclk = 1; 45 forever begin 46 #(T/2.0) pclk = ~pclk; 47 end 48 end 49 50 initial begin 51 presetn = 1; 52 #1; 53 presetn = 0; 54 #(T*2); 55 presetn = 1; 56 end 57 58 59 assign req_tx_vld = pselx & pwrite & penable & pready & ~pslverr & (paddr == ADDR_TX_FIFO || paddr == ADDR_RX_FIFO); 60 61 Environment env; 62 Config req_config; 63 initial begin 64 65 env = new(); 66 //req_config = new(CONFIG_WR_DATA); 67 req_config = new(CONFIG_RD_DATA); 68 env.req_config = req_config; 69 70 #1; 71 #(T*2); 72 73 env.env_run(); 74 end 75 /////////////////////////// 76 i2c_slave 77 #(.DATA_WIDTH(DATA_W)) 78 i2c_slave_vip( 79 .clk (pclk), 80 .scl (scl), 81 .sda (sda), 82 .sda_master_en (sda_enable), 83 .data_r (data_r), 84 .data_r_vld (data_r_vld), 85 .data_w (), 86 .data_w_vld () 87 ); 88 89 90 i2c DUT( 91 //APB PORTS 92 .PCLK (pclk), 93 .PRESETn (presetn), 94 .PADDR (paddr), 95 .PWDATA (pwdata), 96 .PWRITE (pwrite), 97 .PSELx (pselx), 98 .PENABLE (penable), 99 . PREADY (pready), 100 . PSLVERR (pslverr), 101 . INT_RX (int_rx), 102 . INT_TX (int_tx), 103 . PRDATA (prdata), 104 . SDA_ENABLE (sda_enable), 105 . SCL_ENABLE (scl_enable), 106 .SDA (sda), 107 .SCL (scl) 108 109 ); 110 111 endmodule
五、仿真分析
当Config类对象的配置参数为CONFIG_WR_DATA时,generator发起写请求。波形如下:
观察打印的Log可以看出每个SCL时钟周期采集到一个bit,MAILBOX正确传输,checker对比正确,故而仿真PASS。
验证过程中发现该模块有很多BUG!!这里举两个例子。
1 SDA为双向端口,但当sda_enable为0时,并没有赋值为高阻态,即释放信号线控制权给slave。做出如下修改并让VIP在ACK阶段拉低SDA。
2 SCL在读操作状态机中没有被toggle,因此config的配置参数为CONFIG_RD_DATA时SCL没有翻转。在读操作状态机中添加翻转逻辑,使BR_CLK_RX_O信号在counter_receive_data == clk_t_1_4时拉高,counter_receive_data==clk_t_3_4时拉低。
波形显示在读操作时SCL正常翻转。
该模块的读操作很多地方不正确还有待修改,就不一一赘述了。总的来说就是根本不能用o(╥﹏╥)o 不抱希望了,之后我还是自己写一个吧。
六、总结
本文利用APB_I2C模块为例搭建了层次化验证平台,但还有待改善。这里列出几点:
1 没有完全做到测试用例与环境分离
2 没有构建场景层给予丰富的pattern
七、参考
1 《SystemVerilog验证——测试平台编写指南》
2 《QuestaSim Tutorial》
3 《QuestaSim User Manual》
4 《apbi2c_spec》
5 Overview :: APB to I2C :: OpenCores https://opencores.org/projects/apbi2c