卷积神经网络手写字体识别-高级API

使用Estimators、Experiment高级API

from __future__ import division, print_function, absolute_import

# Import MNIST data,MNIST数据集导入
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np


# In[2]:

# Training Parameters,超参数
learning_rate = 0.001 #学习率
num_steps = 2000 # 训练步数
batch_size = 128 # 训练数据批的大小

# Network Parameters,网络参数
num_input = 784 # MNIST数据输入 (img shape: 28*28)
num_classes = 10 # MNIST所有类别 (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units,保留神经元相应的概率


# In[3]:

# Create the neural network,创建深度神经网络
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
    
    # Define a scope for reusing the variables,确定命名空间
    with tf.variable_scope('ConvNet', reuse=reuse):
        # TF Estimator类型的输入为像素
        x = x_dict['images']

        # MNIST数据输入格式为一位向量,包含784个特征 (28*28像素)
        # 用reshape函数改变形状以匹配图像的尺寸 [高 x 宽 x 通道数]
        # 输入张量的尺度为四维: [(每一)批数据的数目, 高,宽,通道数]
        x = tf.reshape(x, shape=[-1, 28, 28, 1])

        # 卷积层,32个卷积核,尺寸为5x5
        conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
        # 最大池化层,步长为2,无需学习任何参量
        conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

        # 卷积层,32个卷积核,尺寸为5x5
        conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
        # 最大池化层,步长为2,无需学习任何参量
        conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

        # 展开特征为一维向量,以输入全连接层
        fc1 = tf.contrib.layers.flatten(conv2)

        # 全连接层 展开成1024 维度矩阵
        fc1 = tf.layers.dense(fc1, 1024)
        # 应用Dropout (训练时打开,测试时关闭)
        fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

        # 输出层,预测类别
        out = tf.layers.dense(fc1, n_classes)

    return out


# In[4]:

# 确定模型功能 (参照TF Estimator模版)  参数分别为输入特征、标签、
def model_fn(features, labels, mode):
    
    # 构建神经网络
    # 因为dropout在训练与测试时的特性不一,我们此处为训练和测试过程创建两个独立但共享权值的计算图
    logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True)
    logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False)
    
    # 预测 axis = 1的时候返回每一行最大值的位置索引
    #tf.argmax 计算正确答案对应的类别编号
    pred_classes = tf.argmax(logits_test, axis=1)
    #计算非线性激励
    pred_probas = tf.nn.softmax(logits_test)
    
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) 
        
    # 确定误差函数与优化器
    #tf.nn.sparse_softmax_cross_entropy_with_logits 计算交叉熵
    #tf.reduce_mean 计算交叉熵平均值
    loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step())
    
    # 评估模型精确度
    acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)
    
    # TF Estimators需要返回EstimatorSpec
    estim_specs = tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=pred_classes,
      loss=loss_op,
      train_op=train_op,
      eval_metric_ops={'accuracy': acc_op})

    return estim_specs


# In[5]:

# 构建Estimator
model = tf.estimator.Estimator(model_fn)


# In[6]:

# 确定训练输入函数
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': mnist.train.images}, y=mnist.train.labels,
    batch_size=batch_size, num_epochs=None, shuffle=True)
# 开始训练模型
model.train(input_fn, steps=num_steps)


# In[7]:

# 评判模型
# 确定评判用输入函数
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': mnist.test.images}, y=mnist.test.labels,
    batch_size=batch_size, shuffle=False)
model.evaluate(input_fn)


# In[8]:

# 预测单个图像 循环图片个数
n_images = 10
# 从数据集得到测试图像  获取前10张图片
test_images = mnist.test.images[:n_images]
# 准备输入数据
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': test_images}, shuffle=False)
# 用训练好的模型预测图片类别
preds = list(model.predict(input_fn))

# 可视化显示
for i in range(n_images):
    plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray')
    plt.show()
    print("Model prediction:", preds[i])




原生版Tensorflow训练模型

from __future__ import division, print_function, absolute_import

import tensorflow as tf

# Import MNIST data,MNIST数据集导入
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)


# In[2]:

# Hyper-parameters,超参数
learning_rate = 0.001
num_steps = 500
batch_size = 128
display_step = 10

# Network Parameters,网络参数
num_input = 784 # MNIST数据输入 (img shape: 28*28)
num_classes = 10 # MNIST所有类别 (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units,保留神经元相应的概率

# tf Graph input,TensorFlow图结构输入
X = tf.placeholder(tf.float32, [None, num_input])
Y = tf.placeholder(tf.float32, [None, num_classes])
keep_prob = tf.placeholder(tf.float32) # dropout (keep probability),保留i


# In[3]:

# Create some wrappers for simplicity,创建基础卷积函数,简化写法
def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation,卷积层,包含bias与非线性relu激励
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x)


def maxpool2d(x, k=2):
    # MaxPool2D wrapper,最大池化层
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                          padding='SAME')


# Create model,创建模型
def conv_net(x, weights, biases, dropout):
    # MNIST数据为维度为1,长度为784 (28*28 像素)的
    # Reshape to match picture format [Height x Width x Channel]
    # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
    x = tf.reshape(x, shape=[-1, 28, 28, 1])

    # Convolution Layer,卷积层
    conv1 = conv2d(x, weights['wc1'], biases['bc1'])
    # Max Pooling (down-sampling),最大池化层/下采样
    conv1 = maxpool2d(conv1, k=2)

    # Convolution Layer,卷积层
    conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
    # Max Pooling (down-sampling),最大池化层/下采样
    conv2 = maxpool2d(conv2, k=2)

    # Fully connected layer,全连接网络
    # Reshape conv2 output to fit fully connected layer input,调整conv2层输出的结果以符合全连接层的需求
    fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    # Apply Dropout,应用dropout
    fc1 = tf.nn.dropout(fc1, dropout)

    # Output, class prediction,最后输出预测
    out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    return out


# In[4]:

# Store layers weight & bias 存储每一层的权值和全差
weights = {
    # 5x5 conv, 1 input, 32 outputs
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    # 5x5 conv, 32 inputs, 64 outputs
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    # fully connected, 7*7*64 inputs, 1024 outputs
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
    # 1024 inputs, 10 outputs (class prediction)
    'out': tf.Variable(tf.random_normal([1024, num_classes]))
}

biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([num_classes]))
}

# Construct model,构建模型
logits = conv_net(X, weights, biases, keep_prob)
prediction = tf.nn.softmax(logits)

# Define loss and optimizer,定义误差函数与优化器
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)


# Evaluate model,评估模型
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initialize the variables (i.e. assign their default value),初始化图结构所有变量
init = tf.global_variables_initializer()


# In[5]:

# Start training,开始训练
with tf.Session() as sess:

    # Run the initializer,初始化
    sess.run(init)

    for step in range(1, num_steps+1):
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        # Run optimization op (backprop),优化
        sess.run(train_op, feed_dict={X: batch_x, Y: batch_y, keep_prob: dropout})
        if step % display_step == 0 or step == 1:
            # Calculate batch loss and accuracy
            loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
                                                                 Y: batch_y,
                                                                 keep_prob: 1.0})
            print("Step " + str(step) + ", Minibatch Loss= " +                   "{:.4f}".format(loss) + ", Training Accuracy= " +                   "{:.3f}".format(acc))

    print("Optimization Finished!")

    # Calculate accuracy for 256 MNIST test images,以每256个测试图像为例,
    print("Testing Accuracy:",         sess.run(accuracy, feed_dict={X: mnist.test.images[:256],
                                      Y: mnist.test.labels[:256],
                                      keep_prob: 1.0}))


你可能感兴趣的:(卷积神经网络手写字体识别-高级API)