走近PCR,一项神奇的技术

分子生物学技术是近20年来生命科学的一个主要的生长点。

自1976年cDNA克隆技术的建立以来,分子生物学迅速、广泛地渗透到医学各学科,并逐渐发展完善了各学科的分子理论基础。

而在1985年由Mullis首先描述的多聚酶链反应( PCR, Polymerase Chain Reaction ),更是使一向昂贵、繁杂、严格的分子生物学试验能够在比较简易、经济的条件下有效的开展。

这是基因分析技术的一项重大突破,这一技术在很短的时间里即风行全球,不同学科的顶级科学家都蜂拥云集,形成了近年来分子生物学领域上的热潮。

今天让我们一起来了解一下这个神奇的PCR技术吧。

(一)PCR的概念

PCR就是利用DNA聚合酶对特定基因做体外或试管内 (In Vitro) 的大量合成。基本上它是利用DNA聚合酶进行专一性的连锁复制。目前常用的技术,可以将一段基因复制为原来的一百亿至一千亿倍。

PCR技术能快速特异地在体外复制目的基因,理论上能将其量极微的(fg DNA)目的基因在较短的时间内(1-2小时)扩增到极易检测的微克水平。

PCR技术目前已经成为人们获得目标基因的最常用的方法之一。然而其基本原理并不复杂,主要包括模板DNA(目标DNA)加热变性;降温后反应混合物中特异性引物与单链DNA模板的复性;72℃条件下,Taq酶诱导引物借助模板信息由5’端到3’端延伸。

每一轮反应,模板拷贝数都增加一倍,理论上n次循环后,扩增产物拷贝数为2E(n-1)。但在PCR反应后期由于底物的消耗,Taq酶活力的下降,PCR抑制物的增加,PCR反应的指数形式逐渐转化为线性形式进入扩增的平台期,实际上30-35个循环,扩增倍数一般可达百万倍。

如果想再提高扩增产物的量,可以将产物DNA再稀释1000倍作为新的模板进行第二轮的PCR扩增,一般二次扩增后的DNA数量已达到所有分子生物学操作的要求。

(二)PCR的要素

基本的PCR须具备:

1.要被复制的DNA模板 (Template) 

2.界定复制范围两端的引物(Primers)

3.DNA聚合酶 (Taq. Polymearse) 

4.合成的原料及水

PCR的反应包括三个主要步骤:

1). Denaturation 

2). Annealing of primers

3). Extension of primers

所谓 Denaturation乃是将DNA加热变性,将双股的DNA加热后转为单股DNA以做为复制的模板。而Annealing 则是令 Primers于一定的温度下附着于模板DNA两端。 最后在DNA聚合酶 (e.g. Taq-polymerase) 的作用下进行引物的延长 (Extension of primers)及另一股的合成。

(三)PCR的过程

PCR一般可分为变性退火延伸三个阶段,下面我们来详细看一下。

1 变性

DNA双螺旋结构的生物功能在于复制与转录,加热或在碱性条件下可以使DNA双螺旋的氢键断裂,形成单链DNA,称之为DNA变性。解除条件后,变形的单链DNA可以重新结合起来,再形成双链,称之为DNA复性,又叫退火。DNA双链离解一半时温度称为解链温度(Tm)。

不同DNA的解链温度不同,取决于DNA中G-C与A-T的含量的区别。G-C间有三个氢键,A-T间有两个氢键,因此G-C比例大的DNA片段解链温度高,一般,G-C含量每增加1%,PCR变性温度增加0.4℃。Tm范围通常一般在85-95℃之间,PCR变性温度选择94℃,变性时间为30秒到2分钟。

2 退火

PCR反应体系的退火其实是模板与引物的复性。

引物是与模板某区序列互补的一小段DNA片段。一般引物是人们根据目标DNA的序列人工合成的,其长度在15-30碱基之间,引物的设计有一定的原则,但完全达到理论要求的理想引物,几乎不存在。通常反应体系中包含两个引物所对应的模板区间的DNA片段。

由于引物的浓度大大地超出体系中模板的浓度,所以变性后,系统温度降低,首先是引物与单链模板DNA结合,形成局部双链,而不是原来的两条单链模板DNA再结合形成的完整的双链。

3 延伸

PCR中链的延伸是有方向的,以引物为起点,从5’端到3’端延伸,这是由DNA聚合酶(Taq酶)决定的。Taq酶具有DNA多聚酶的核心功能——以DNA为模板,从结合在特定DNA模板上的引物为出发点,将四种脱氧核苷酸以Watson-Crick配对方式按5’—3’的方向,沿着模板顺序合成新的DNA链。

Taq酶催化DNA合成的温度以70℃~80℃为宜,此时该酶的Kcat值为150核苷/秒/酶分子,55℃为24核苷/秒/酶分子,37℃为1.5核苷/秒/酶分子,22℃为0.25核苷/秒/酶分子。高于90℃时DNA合成几乎不进行。

Taq DNA多聚合酶具有依赖DNA合成的5’端到3’端外切酶活性。但不会影响PCR扩增。Taq酶没有3’端到5’端外切酶活性,所以如果发生脱氧核苷酸的错误掺入时,这种酶没有校正能力。

Taq酶对Mg2+离子浓度较为敏感,1.5~2.0mM条件下酶活性最高,许多生物变性剂对酶活性有不同程度的影响。PCR扩增DNA特定区段,是由人工合成的两条寡核苷酸引物所决定的,这是PCR扩增的理论关键。

(四)PCR的特点

PCR技术以其自身巧妙的原理有与众不同的特点,高特异性、高敏感性及简便快捷使其成为基因诊断首选的技术之一。

1.高特异性

PCR扩增严格遵守碱基配对原则的半保留复制。半保留复制是世界上最严格的复制方式之一,其新合成的子链与模板形成完全互补的镜像结构,从而充分保证了复制的准确性。

另外,由于碱基互补原则,只有当引物与目的基因完全互补时,反应体系中的引物才能与模板产生复性,引物的延伸才得以进行,因此引物与模板的互补是复制的最基本条件,这从另一方面规定了PCR反应的高特异性。

在生物界中,某种基因总有它最保守的、最具特征性的基因区段,它是某些生物,或某些型、亚型等功能分型所特有的。若能正确地选择这一区域作为扩增的目的基因,便可以充分地保障PCR检测的高度特异性。

2.高敏感性

在PCR反应中模板DNA以指数级迅速增加,扩增反应前期进入以指数级迅速增加,扩增反应后期进入平台反应期,一般经过30个循环即1-2小时内可以将靶序列增加百万倍以上,可以将微量的目标物(fg DNA)检测出来。

过去采用的一些微量检测法,如酶联免疫吸附实验(ELISA)和放射免疫分析(RIA)其灵敏度分别为ng级和pg级,而PCR可达fg级,理论上可以检出病原体的单拷贝基因的存在。

3.简便快捷

Taq酶的使用使PCR技术可以自动化完成,各种高效PCR仪相续问世使PCR操作可以在基层单位的实验室中顺利完成。在PCR的实际应用中,许多技术得到改进,扩增反应体积减少,多种成分预先混合减少加样步骤,这些简化步骤大多不影响PCR的扩增效果。

(五)PCR局限性

PCR的局限性主要是由于Taq酶缺乏3’端到5’端外切酶活性,因而不能纠正反应中发生的错误的核苷酸掺入,复制的新的DNA链中有一定程度的错配碱基,估计错配率为9000个核苷有一个错配,41000个核苷酸可能导致一次码移位。然而错配碱基有终止延伸倾向,这使错配的DNA片段不会进一步扩大。

另外,PCR要求比较严格,容易出现实验污染或操作污染而出现假阳性结果。同时如果扩增仪温度不准确,反应液处理不好导致PCR抑制物进入反应体系又会出现假阴性结果。

因此在开展PCR工作之前,有关人员最好能经过系统的学习及规范化的基本技能培训过程。

(六)PCR的运用

PCR除了是一个诊断工具外,更重要的是它有广泛的运用。

PCR本身可直接用来鉴定特定基因的存在与否,也可以用来侦测基因是否有异常 (Gene mutation, deletion, and rearrangement…)。例如,在医学上对遗传疾病或肿瘤癌症的诊断及预后的评估; 对细菌、病毒及霉菌感染的诊断。

它也可成为一个生产线进而大量复制特定的基因进行基因密码的读取 (DNA sequencing) 及其它的运用。对生物标本及法医学上的样本鉴定,从单一毛发、一只精虫或一滴血液、唾液来找出凶手。也可以做DNA指纹 (Fingerprints) 比对帮助亲子关系的鉴定。

PCR更可以用于器官移植组织兼容性HLA的分析。另外在演化上的分析,经由PCR的运用也产生重大的进展。

近年,在生物医学的研究上,特别是细胞间讯息的传递分子,诸如介白质 (Interleukines) 及各种生长因子 (Growth factors) 基因的表现都可用PCR来进行质与量的分析。


人类在迈入二十一世纪中即将出现若干的突破,生物医学便是其中重要的一项。

PCR带给人们的震撼,除了众多的得奖外,更在于它的可塑性、修饰性及全方位的运用。未来的生物医学领域中,它也必定继续扮演举足轻重的角色。

你可能感兴趣的:(走近PCR,一项神奇的技术)