Raft算法简介

前言

Paxos协议算法貌似已经成了一致性算法的标准,但是其太难理解和实现,在工程实践当中也就只是Chubby、libpaxos。
Raft就是在这个背景下诞生的,Paxos最大的问题就是复杂,Raft一致性算法就是比Paxos简单又能实现Paxos所解决的问题的一致性算法。

概述

与Paxos不同Raft强调的是易懂(Understandability),Raft和Paxos一样只要保证n/2+1节点正常就能够提供服务;众所周知但问题较为复杂时可以把问题分解为几个小问题来处理,Raft也使用了分而治之的思想把算法流程分为三个子问题: 选举(Leader election) 、 日志复制(Log replication) 、 安全性(Safety) 三个子问题。

角色

在一个由 Raft 协议组织的集群中有三类角色:
Leader(领袖)
Follower(群众)
Candidate(候选人)

流程概述

Raft开始时在集群中选举出Leader负责日志复制的管理,Leader接受来自客户端的事务请求(日志),并将它们复制给集群的其他节点,然后负责通知集群中其他节点提交日志,Leader负责保证其他节点与他的日志同步,当Leader宕掉后集群其他节点会发起选举选出新的Leader;

Raft详解

角色详解

Raft运行时提供服务的时候只存在Leader与Follower两种状态;

  • Leader(领导者):负责日志的同步管理,处理来自客户端的请求,与Follower保持这heartBeat的联系;

  • Follower(追随者):刚启动时所有节点为Follower状态,响应Leader的日志同步请求,响应Candidate的请求,把请求到Follower的事务转发给Leader;

  • Candidate(候选者):负责选举投票,Raft刚启动时由一个节点从Follower转为Candidate发起选举,选举出Leader后从Candidate转为Leader状态;

Raft算法简介_第1张图片
Paste_Image.png

Term

在Raft中使用了一个可以理解为周期(第几届、任期)的概念,用Term作为一个周期,每个Term都是一个连续递增的编号,每一轮选举都是一个Term周期,在一个Term中只能产生一个Leader;先简单描述下Term的变化流程: Raft开始时所有Follower的Term为1,其中一个Follower逻辑时钟到期后转换为Candidate,Term加1这是Term为2(任期),然后开始选举,这时候有几种情况会使Term发生改变:

1、如果当前Term为2的任期内没有选举出Leader或出现异常,则Term递增,开始新一任期选举

2、当这轮Term为2的周期选举出Leader后,过后Leader宕掉了,然后其他Follower转为Candidate,Term递增,开始新一任期选举

3、当Leader或Candidate发现自己的Term比别的Follower小时Leader或Candidate将转为Follower,Term递增

4、当Follower的Term比别的Term小时Follower也将更新Term保持与其他Follower一致;

可以说每次Term的递增都将发生新一轮的选举,Raft保证一个Term只有一个Leader,在Raft正常运转中所有的节点的Term都是一致的,如果节点不发生故障一个Term(任期)会一直保持下去,当某节点收到的请求中Term比当前Term小时则拒绝该请求;

选举

Raft的选举由定时器来触发,每个节点的选举定时器时间都是不一样的,开始时状态都为Follower某个节点定时器触发选举后Term递增,状态由Follower转为Candidate,向其他节点发起RequestVote RPC请求,这时候有三种可能的情况发生:

1、该RequestVote请求接收到n/2+1(过半数)个节点的投票,从Candidate转为Leader,向其他节点发送heartBeat以保持Leader的正常运转

2、在此期间如果收到其他节点发送过来的AppendEntries RPC请求,如该节点的Term大则当前节点转为Follower,否则保持Candidate拒绝该请求

3、Election timeout发生则Term递增,重新发起选举

在一个Term期间每个节点只能投票一次,所以当有多个Candidate存在时就会出现每个Candidate发起的选举都存在接收到的投票数都不过半的问题,这时每个Candidate都将Term递增、重启定时器并重新发起选举,由于每个节点中定时器的时间都是随机的,所以就不会多次存在有多个Candidate同时发起投票的问题。

有这么几种情况会发起选举,1:Raft初次启动,不存在Leader,发起选举;2:Leader宕机或Follower没有接收到Leader的heartBeat,发生election timeout从而发起选举;

日志复制(一致性和异常处理)

所有事务(更新操作)请求都必须先经过Leader处理,这些事务请求或说成命令也就是这里说的日志

在Raft中当接收到客户端的日志(事务请求)后先把该日志追加到本地的Log中,然后通过heartbeat把该Entry同步给其他Follower,Follower接收到日志后记录日志然后向Leader发送ACK,当Leader收到大多数(n/2+1)Follower的ACK信息后将该日志设置为已提交并追加到本地磁盘中,通知客户端并在下个heartbeat中Leader将通知所有的Follower将该日志存储在自己的本地磁盘中。

Raft算法简介_第2张图片
Paste_Image.png

在这个过程中,任意节点都有可能挂掉,下面看看raft怎么保证异常情况下的数据一致性

1、数据到达 Leader 节点前

Raft算法简介_第3张图片
Paste_Image.png

2、数据到达 Leader 节点,但未复制到 Follower 节点

这个阶段 Leader 挂掉,数据属于未提交状态,Client 不会收到 Ack 会认为超时失败可安全发起重试。Follower 节点上没有该数据,重新选主后 Client 重试重新提交可成功。原来的 Leader 节点恢复后作为 Follower 加入集群重新从当前任期的新 Leader 处同步数据,强制保持和 Leader 数据一致。

Raft算法简介_第4张图片
Paste_Image.png

3、数据到达 Leader 节点,成功复制到 Follower 所有节点,但还未向 Leader 响应接收

这个阶段 Leader 挂掉,虽然数据在 Follower 节点处于未提交状态(Uncommitted)但保持一致,重新选出 Leader 后可完成数据提交,此时 Client 由于不知到底提交成功没有,可重试提交。针对这种情况 Raft 要求 RPC 请求实现幂等性,也就是要实现内部去重机制。

Raft算法简介_第5张图片
Paste_Image.png

4、数据到达 Leader 节点,成功复制到 Follower 部分节点,但还未向 Leader 响应接收

这个阶段 Leader 挂掉,数据在 Follower 节点处于未提交状态(Uncommitted)且不一致,Raft 协议要求投票只能投给拥有最新数据的节点。所以拥有最新数据的节点会被选为 Leader 再强制同步数据到 Follower,数据不会丢失并最终一致。

Raft算法简介_第6张图片
Paste_Image.png

5、数据到达 Leader 节点,成功复制到 Follower 所有或多数节点,数据在 Leader 处于已提交状态,但在 Follower 处于未提交状态

这个阶段 Leader 挂掉,重新选出新 Leader 后的处理流程和阶段 3 一样。

Raft算法简介_第7张图片
Paste_Image.png

6、数据到达 Leader 节点,成功复制到 Follower 所有或多数节点,数据在所有节点都处于已提交状态,但还未响应 Client

这个阶段 Leader 挂掉,Cluster 内部数据其实已经是一致的,Client 重复重试基于幂等策略对一致性无影响。

Raft算法简介_第8张图片
Paste_Image.png

7、网络分区导致的脑裂情况,出现双 Leader

网络分区将原先的 Leader 节点和 Follower 节点分隔开,Follower 收不到 Leader 的心跳将发起选举产生新的 Leader。这时就产生了双 Leader,原先的 Leader 独自在一个区,向它提交数据不可能复制到多数节点所以永远提交不成功。向新的 Leader 提交数据可以提交成功,网络恢复后旧的 Leader 发现集群中有更新任期(Term)的新 Leader 则自动降级为 Follower 并从新 Leader 处同步数据达成集群数据一致。

Raft算法简介_第9张图片
Paste_Image.png

安全性

安全性是用于保证每个节点都执行相同序列的安全机制,如当某个Follower在当前Leader commit Log时变得不可用了,稍后可能该Follower又会倍选举为Leader,这时新Leader可能会用新的Log覆盖先前已committed的Log,这就是导致节点执行不同序列;Safety就是用于保证选举出来的Leader一定包含先前 commited Log的机制;

你可能感兴趣的:(Raft算法简介)