【Codechef】CNTL

题面

vjudge

题解

第一问直接考虑一下\(N,K\)的奇偶性即可,当他们奇偶性相同,答案就是\(2^K-1\),否则是\(2^K-2\)

第二问因为是排列问题考虑指数型生成函数,那么当答案为\(2^K-1\)时,答案为\([x^n](\frac{e^x-e^{-x}}{2})^K\),否则为\([x^n][(\frac{e^x-e^{-x}}{2})^{K-1}\times \frac{e^x+e^{-x}}{2}]\)

最后把这两个式子二项式展开一下就完事儿了。

代码

#include 
#include 
#include 
#include  
#include  
#include 
using namespace std; 
inline int gi() {
    register int data = 0, w = 1;
    register char ch = 0;
    while (!isdigit(ch) && ch != '-') ch = getchar(); 
    if (ch == '-') w = -1, ch = getchar(); 
    while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
    return w * data; 
} 
const int Mod = 1e9 + 7; 
const int MAX_N = 1e5 + 5; 
int fpow(int x, int y) { 
    int res = 1; 
    while (y) { 
        if (y & 1) res = 1ll * res * x % Mod; 
        x = 1ll * x * x % Mod; 
        y >>= 1; 
    } 
    return res; 
} 
int N = 1e5, K, fac[MAX_N], ifc[MAX_N]; 
int C(int n, int m) {
    if (n < 0 || m < 0 || n < m) return 0;
    else return 1ll * fac[n] * ifc[m] % Mod * ifc[n - m] % Mod; 
} 

int main () { 
    fac[0] = 1; for (int i = 1; i <= N; i++) fac[i] = 1ll * fac[i - 1] * i % Mod; 
    ifc[N] = fpow(fac[N], Mod - 2); 
    for (int i = N - 1; ~i; i--) ifc[i] = 1ll * ifc[i + 1] * (i + 1) % Mod; 
    int Q = gi(); 
    while (Q--) { 
        N = gi(), K = gi(); 
        if ((N ^ K) & 1) { 
            int ans = 0; 
            for (int i = 0, op = fpow(Mod - 1, K - 1); i < K; i++, op = Mod - op) 
                ans = (ans + 1ll * op * C(K - 1, i) % Mod *
                       (fpow(2 * i - K + 2 + Mod, N) + fpow(2 * i - K + Mod, N))) % Mod; 
            printf("%d %lld\n", fpow(2, K) - 2, 1ll * ans * fpow(fpow(2, K), Mod - 2) % Mod); 
        } else { 
            int ans = 0; 
            for (int i = 0, op = fpow(Mod - 1, K); i <= K; i++, op = Mod - op)
                ans = (ans + 1ll * op * C(K, i) % Mod * fpow(2 * i - K + Mod, N)) % Mod; 
            printf("%d %lld\n", fpow(2, K) - 1, 1ll * ans * fpow(fpow(2, K), Mod - 2) % Mod); 
        } 
    } 
    return 0; 
} 

你可能感兴趣的:(【Codechef】CNTL)