『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断

一、detect和build

前面多节中我们花了大量笔墨介绍build方法的inference分支,这节我们看看它是如何被调用的。

dimo.ipynb中,涉及model的操作我们简单进行一下汇总,首先创建图并载入预训练权重,

『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断_第1张图片

然后规范了类别序列,

『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断_第2张图片

实际开始检测的代码块如下,

『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断_第3张图片

『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断_第4张图片

经由model.detect方法,调用model.build方法(也就是我们前面多节在讲解的方法)构建图,实施预测。

二、detect方法

首先看看detect方法的前几行(和build一样,同见model.py),

    def detect(self, images, verbose=0):
        """Runs the detection pipeline.

        images: List of images, potentially of different sizes.

        Returns a list of dicts, one dict per image. The dict contains:
        rois: [N, (y1, x1, y2, x2)] detection bounding boxes
        class_ids: [N] int class IDs
        scores: [N] float probability scores for the class IDs
        masks: [H, W, N] instance binary masks
        """
        assert self.mode == "inference", "Create model in inference mode."
        assert len(
            images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE"

        # 日志记录
        if verbose:
            log("Processing {} images".format(len(images)))
            for image in images:
                log("image", image)

1、待检测图像预处理

        # Mold inputs to format expected by the neural network
        molded_images, image_metas, windows = self.mold_inputs(images)

        # Validate image sizes
        # All images in a batch MUST be of the same size
        image_shape = molded_images[0].shape
        for g in molded_images[1:]:
            assert g.shape == image_shape,\
                "After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes."

简单的纠错和日志控制之后,即调用mold_input函数对输入图片进行调整,并记录图片信息

self.mold_inputs方法如下,

    def mold_inputs(self, images):
        """Takes a list of images and modifies them to the format expected
        as an input to the neural network.
        images: List of image matrices [height,width,depth]. Images can have
            different sizes.

        Returns 3 Numpy matrices:
        molded_images: [N, h, w, 3]. Images resized and normalized.
        image_metas: [N, length of meta data]. Details about each image.
        windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the
            original image (padding excluded).
        """
        molded_images = []
        image_metas = []
        windows = []
        for image in images:
            # Resize image
            # TODO: move resizing to mold_image()
            molded_image, window, scale, padding, crop = utils.resize_image(
                image,
                min_dim=self.config.IMAGE_MIN_DIM,      # 800
                min_scale=self.config.IMAGE_MIN_SCALE,  # 0
                max_dim=self.config.IMAGE_MAX_DIM,      # 1024
                mode=self.config.IMAGE_RESIZE_MODE)     # square
            molded_image = mold_image(molded_image, self.config)  # 减平均像素
            # Build image_meta 形式为np数组
            image_meta = compose_image_meta(
                0, image.shape, molded_image.shape, window, scale,
                np.zeros([self.config.NUM_CLASSES], dtype=np.int32))
            # Append
            molded_images.append(molded_image)
            windows.append(window)
            image_metas.append(image_meta)
        # Pack into arrays
        molded_images = np.stack(molded_images)
        image_metas = np.stack(image_metas)
        windows = np.stack(windows)
        return molded_images, image_metas, windows

utils.resize_image函数用于缩放原图像,它生成一个scale,返回图像大小等于输入图像大小*scale并保证

  1. 最短边等于输入min_dim,最长边不大于max_dim
  2. 如果最长边超过了max_dim则保证最长边等于max_dim,最短边不再限制

最后,将图片padding到max_dim*max_dim大小(即molded_images大小其实是固定的),其返回值如下:

image.astype(image_dtype), window, scale, padding, crop

表示:resize后图片,原图相对resize后图片的位置信息(详见『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼),放缩倍数,padding信息(四个整数),crop信息(四个整数或者None)。

mold_image函数更为简单,就是把图片像素减去了个平均值,MEAN_PIXEL=[123.7 116.8 103.9]。

compose_image_meta记录了全部的原始信息,可以看到,crop并未收录在内,

def compose_image_meta(image_id, original_image_shape, image_shape,
                       window, scale, active_class_ids):
    """Takes attributes of an image and puts them in one 1D array.

    image_id: An int ID of the image. Useful for debugging.
    original_image_shape: [H, W, C] before resizing or padding.
    image_shape: [H, W, C] after resizing and padding
    window: (y1, x1, y2, x2) in pixels. The area of the image where the real
            image is (excluding the padding)
    scale: The scaling factor applied to the original image (float32)
    active_class_ids: List of class_ids available in the dataset from which
        the image came. Useful if training on images from multiple datasets
        where not all classes are present in all datasets.
    """
    meta = np.array(
        [image_id] +                  # size=1
        list(original_image_shape) +  # size=3
        list(image_shape) +           # size=3
        list(window) +                # size=4 (y1, x1, y2, x2) in image cooredinates
        [scale] +                     # size=1
        list(active_class_ids)        # size=num_classes
    )
    return meta

最后拼接返回。

2、anchors生成

首先调用方法get_anchors生成锚框(见『计算机视觉』Mask-RCNN_锚框生成),shape为[anchor_count, (y1, x1, y2, x2)],

        # Anchors
        anchors = self.get_anchors(image_shape)
        # Duplicate across the batch dimension because Keras requires it
        # TODO: can this be optimized to avoid duplicating the anchors?
        # [anchor_count, (y1, x1, y2, x2)] --> [batch, anchor_count, (y1, x1, y2, x2)]
        anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape)

 

然后为之添加batch维度,最终[batch, anchor_count, (y1, x1, y2, x2)]。

3、inference网络预测

调用keras的predict方法前向传播,在预测任务中我们仅仅关注detections和mrcnn_mask两个输出。

        # Run object detection
        # 于__init__中定义:self.keras_model = self.build(mode=mode, config=config)
        # 返回list:    [detections, mrcnn_class, mrcnn_bbox,
        #               mrcnn_mask, rpn_rois, rpn_class, rpn_bbox]
        # detections,  [batch, num_detections, (y1, x1, y2, x2, class_id, score)]
        # mrcnn_mask,  [batch, num_detections, MASK_POOL_SIZE, MASK_POOL_SIZE, NUM_CLASSES]
        detections, _, _, mrcnn_mask, _, _, _ =\
            self.keras_model.predict([molded_images, image_metas, anchors], verbose=0)

4、坐标框重映射

我们对于坐标的操作都是基于输入图片的相对位置,且单位长度也是其宽高,在最后我们需要将之修正回像素空间坐标。

令输入图片list不需要输入图片具有相同的尺寸,所以我们在恢复时必须注意单张处理之。

        # Process detections
        results = []
        for i, image in enumerate(images):
            # 需要单张处理,因为原始图片images不保证每张尺寸一致
            final_rois, final_class_ids, final_scores, final_masks =\
                self.unmold_detections(detections[i], mrcnn_mask[i],
                                       image.shape, molded_images[i].shape,
                                       windows[i])

目标检测框重映射:unmold_detections函数

    def unmold_detections(self, detections, mrcnn_mask, original_image_shape,
                          image_shape, window):
        """Reformats the detections of one image from the format of the neural
        network output to a format suitable for use in the rest of the
        application.

        detections: [N, (y1, x1, y2, x2, class_id, score)] in normalized coordinates
        mrcnn_mask: [N, height, width, num_classes]
        original_image_shape: [H, W, C] Original image shape before resizing
        image_shape: [H, W, C] Shape of the image after resizing and padding
        window: [y1, x1, y2, x2] Pixel coordinates of box in the image where the real
                image is excluding the padding.

        Returns:
        boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels
        class_ids: [N] Integer class IDs for each bounding box
        scores: [N] Float probability scores of the class_id
        masks: [height, width, num_instances] Instance masks
        """
        # How many detections do we have?
        # Detections array is padded with zeros. Find the first class_id == 0.
        zero_ix = np.where(detections[:, 4] == 0)[0]  # DetectionLayer 末尾对结果进行了全0填充
        N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0]  # 有意义的检测结果数N

        # Extract boxes, class_ids, scores, and class-specific masks
        boxes = detections[:N, :4]                         # [N, (y1, x1, y2, x2)]
        class_ids = detections[:N, 4].astype(np.int32)     # [N, class_id]
        scores = detections[:N, 5]                         # [N, score]
        masks = mrcnn_mask[np.arange(N), :, :, class_ids]  # [N, height, width, num_classes]

        # Translate normalized coordinates in the resized image to pixel
        # coordinates in the original image before resizing
        window = utils.norm_boxes(window, image_shape[:2])  # window相对输入图片规范化

        wy1, wx1, wy2, wx2 = window
        shift = np.array([wy1, wx1, wy1, wx1])
        wh = wy2 - wy1  # window height
        ww = wx2 - wx1  # window width
        scale = np.array([wh, ww, wh, ww])
        # Convert boxes to normalized coordinates on the window
        boxes = np.divide(boxes - shift, scale)  # box相对window坐标规范化
        # Convert boxes to pixel coordinates on the original image
        boxes = utils.denorm_boxes(boxes, original_image_shape[:2])  # box相对原图解规范化

        # Filter out detections with zero area. Happens in early training when
        # network weights are still random
        exclude_ix = np.where(
            (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0]
        if exclude_ix.shape[0] > 0:
            boxes = np.delete(boxes, exclude_ix, axis=0)
            class_ids = np.delete(class_ids, exclude_ix, axis=0)
            scores = np.delete(scores, exclude_ix, axis=0)
            masks = np.delete(masks, exclude_ix, axis=0)
            N = class_ids.shape[0]

        # Resize masks to original image size and set boundary threshold.
        full_masks = []
        for i in range(N):  # 单个box操作
            # Convert neural network mask to full size mask
            full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape)
            full_masks.append(full_mask)
        full_masks = np.stack(full_masks, axis=-1)\
            if full_masks else np.empty(original_image_shape[:2] + (0,))

        # [n, (y1, x1, y2, x2)]
        # [n, class_id]
        # [n, class_id]
        # [h, w, n]
        return boxes, class_ids, scores, full_masks

 为了将输出结果格式还原,我们需要进行如下几步:

剔除为了凑齐DETECTION_MAX_INSTANCES 填充的全0检测结果

将box放缩回原始图片对应尺寸

剔除面积为0的box

mask输出尺寸还原

在网络中操作的box尺寸为基于输入图片的规范化坐标,window为像素坐标,所以我们先将window相对输入图片规范化,使得window和box处于同一坐标系,然后这两者坐标就可以直接交互了,使box相对window规范化,此时box坐标尺寸都是window的相对值,而window和原始图片是直接有映射关系的,所以box遵循其关系,映射回原始像素大小即可。

完成box映射后,我们开始对mask进行处理。

Mask信息重映射:utils.unmold_mask函数

utils.unmold_mask受调用于unmold_detections尾部:

        # Resize masks to original image size and set boundary threshold.
        full_masks = []
        for i in range(N):  # 单个box操作
            # Convert neural network mask to full size mask
            full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape)
            full_masks.append(full_mask)
        full_masks = np.stack(full_masks, axis=-1)\
            if full_masks else np.empty(original_image_shape[:2] + (0,))

首先重申我们的unmold_detections函数是对单张图片进行处理的,而mask处理进一步的是对每一个检测框进行处理的,

def unmold_mask(mask, bbox, image_shape):
    """Converts a mask generated by the neural network to a format similar
    to its original shape.
    mask: [height, width] of type float. A small, typically 28x28 mask.
    bbox: [y1, x1, y2, x2]. The box to fit the mask in.

    Returns a binary mask with the same size as the original image.
    """
    threshold = 0.5
    y1, x1, y2, x2 = bbox
    mask = resize(mask, (y2 - y1, x2 - x1))
    mask = np.where(mask >= threshold, 1, 0).astype(np.bool)

    # Put the mask in the right location.
    full_mask = np.zeros(image_shape[:2], dtype=np.bool)
    full_mask[y1:y2, x1:x2] = mask
    return full_mask

我们在inference中输出的mask信息仅仅是一般的生成网络输出,所以为了得到掩码格式我们需要一个阈值。明确了这个概念,下一步就简单了,我们将mask输出放缩到对应的box大小即可(此时的box已经相对原始图片进行了放缩,是像素坐标),然后将放缩后的掩码按照box相对原始图片的位置贴在一张和原始图片等大的空白图片上。

我们对每一个检测目标做这个操作,就可以得到等同于检测目标数的原始图片大小的掩码图片(每个掩码图片上有一个掩码对象),将之按照axis=-1拼接,最终获取[h, w, n]格式输出,hw为原始图片大小,n为最终检测到的目标数目。

最终,将计算结果返回,退出函数。

        # [n, (y1, x1, y2, x2)]
        # [n, class_id]
        # [n, class_id]
        # [h, w, n]
        return boxes, class_ids, scores, full_masks

 实际调用如下:

『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断_第5张图片

 

你可能感兴趣的:(『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断)