一、detect和build
前面多节中我们花了大量笔墨介绍build方法的inference分支,这节我们看看它是如何被调用的。
在dimo.ipynb中,涉及model的操作我们简单进行一下汇总,首先创建图并载入预训练权重,
然后规范了类别序列,
实际开始检测的代码块如下,
经由model.detect方法,调用model.build方法(也就是我们前面多节在讲解的方法)构建图,实施预测。
二、detect方法
首先看看detect方法的前几行(和build一样,同见model.py),
def detect(self, images, verbose=0): """Runs the detection pipeline. images: List of images, potentially of different sizes. Returns a list of dicts, one dict per image. The dict contains: rois: [N, (y1, x1, y2, x2)] detection bounding boxes class_ids: [N] int class IDs scores: [N] float probability scores for the class IDs masks: [H, W, N] instance binary masks """ assert self.mode == "inference", "Create model in inference mode." assert len( images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE" # 日志记录 if verbose: log("Processing {} images".format(len(images))) for image in images: log("image", image)
1、待检测图像预处理
# Mold inputs to format expected by the neural network molded_images, image_metas, windows = self.mold_inputs(images) # Validate image sizes # All images in a batch MUST be of the same size image_shape = molded_images[0].shape for g in molded_images[1:]: assert g.shape == image_shape,\ "After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes."
简单的纠错和日志控制之后,即调用mold_input函数对输入图片进行调整,并记录图片信息。
self.mold_inputs方法如下,
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matrices [height,width,depth]. Images can have different sizes. Returns 3 Numpy matrices: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image # TODO: move resizing to mold_image() molded_image, window, scale, padding, crop = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, # 800 min_scale=self.config.IMAGE_MIN_SCALE, # 0 max_dim=self.config.IMAGE_MAX_DIM, # 1024 mode=self.config.IMAGE_RESIZE_MODE) # square molded_image = mold_image(molded_image, self.config) # 减平均像素 # Build image_meta 形式为np数组 image_meta = compose_image_meta( 0, image.shape, molded_image.shape, window, scale, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
utils.resize_image函数用于缩放原图像,它生成一个scale,返回图像大小等于输入图像大小*scale并保证
- 最短边等于输入min_dim,最长边不大于max_dim
- 如果最长边超过了max_dim则保证最长边等于max_dim,最短边不再限制
最后,将图片padding到max_dim*max_dim大小(即molded_images大小其实是固定的),其返回值如下:
image.astype(image_dtype), window, scale, padding, crop
表示:resize后图片,原图相对resize后图片的位置信息(详见『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼),放缩倍数,padding信息(四个整数),crop信息(四个整数或者None)。
mold_image函数更为简单,就是把图片像素减去了个平均值,MEAN_PIXEL=[123.7 116.8 103.9]。
compose_image_meta记录了全部的原始信息,可以看到,crop并未收录在内,
def compose_image_meta(image_id, original_image_shape, image_shape, window, scale, active_class_ids): """Takes attributes of an image and puts them in one 1D array. image_id: An int ID of the image. Useful for debugging. original_image_shape: [H, W, C] before resizing or padding. image_shape: [H, W, C] after resizing and padding window: (y1, x1, y2, x2) in pixels. The area of the image where the real image is (excluding the padding) scale: The scaling factor applied to the original image (float32) active_class_ids: List of class_ids available in the dataset from which the image came. Useful if training on images from multiple datasets where not all classes are present in all datasets. """ meta = np.array( [image_id] + # size=1 list(original_image_shape) + # size=3 list(image_shape) + # size=3 list(window) + # size=4 (y1, x1, y2, x2) in image cooredinates [scale] + # size=1 list(active_class_ids) # size=num_classes ) return meta
最后拼接返回。
2、anchors生成
首先调用方法get_anchors生成锚框(见『计算机视觉』Mask-RCNN_锚框生成),shape为[anchor_count, (y1, x1, y2, x2)],
# Anchors anchors = self.get_anchors(image_shape) # Duplicate across the batch dimension because Keras requires it # TODO: can this be optimized to avoid duplicating the anchors? # [anchor_count, (y1, x1, y2, x2)] --> [batch, anchor_count, (y1, x1, y2, x2)] anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape)
然后为之添加batch维度,最终[batch, anchor_count, (y1, x1, y2, x2)]。
3、inference网络预测
调用keras的predict方法前向传播,在预测任务中我们仅仅关注detections和mrcnn_mask两个输出。
# Run object detection # 于__init__中定义:self.keras_model = self.build(mode=mode, config=config) # 返回list: [detections, mrcnn_class, mrcnn_bbox, # mrcnn_mask, rpn_rois, rpn_class, rpn_bbox] # detections, [batch, num_detections, (y1, x1, y2, x2, class_id, score)] # mrcnn_mask, [batch, num_detections, MASK_POOL_SIZE, MASK_POOL_SIZE, NUM_CLASSES] detections, _, _, mrcnn_mask, _, _, _ =\ self.keras_model.predict([molded_images, image_metas, anchors], verbose=0)
4、坐标框重映射
我们对于坐标的操作都是基于输入图片的相对位置,且单位长度也是其宽高,在最后我们需要将之修正回像素空间坐标。
令输入图片list不需要输入图片具有相同的尺寸,所以我们在恢复时必须注意单张处理之。
# Process detections results = [] for i, image in enumerate(images): # 需要单张处理,因为原始图片images不保证每张尺寸一致 final_rois, final_class_ids, final_scores, final_masks =\ self.unmold_detections(detections[i], mrcnn_mask[i], image.shape, molded_images[i].shape, windows[i])
目标检测框重映射:unmold_detections函数
def unmold_detections(self, detections, mrcnn_mask, original_image_shape, image_shape, window): """Reformats the detections of one image from the format of the neural network output to a format suitable for use in the rest of the application. detections: [N, (y1, x1, y2, x2, class_id, score)] in normalized coordinates mrcnn_mask: [N, height, width, num_classes] original_image_shape: [H, W, C] Original image shape before resizing image_shape: [H, W, C] Shape of the image after resizing and padding window: [y1, x1, y2, x2] Pixel coordinates of box in the image where the real image is excluding the padding. Returns: boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels class_ids: [N] Integer class IDs for each bounding box scores: [N] Float probability scores of the class_id masks: [height, width, num_instances] Instance masks """ # How many detections do we have? # Detections array is padded with zeros. Find the first class_id == 0. zero_ix = np.where(detections[:, 4] == 0)[0] # DetectionLayer 末尾对结果进行了全0填充 N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0] # 有意义的检测结果数N # Extract boxes, class_ids, scores, and class-specific masks boxes = detections[:N, :4] # [N, (y1, x1, y2, x2)] class_ids = detections[:N, 4].astype(np.int32) # [N, class_id] scores = detections[:N, 5] # [N, score] masks = mrcnn_mask[np.arange(N), :, :, class_ids] # [N, height, width, num_classes] # Translate normalized coordinates in the resized image to pixel # coordinates in the original image before resizing window = utils.norm_boxes(window, image_shape[:2]) # window相对输入图片规范化 wy1, wx1, wy2, wx2 = window shift = np.array([wy1, wx1, wy1, wx1]) wh = wy2 - wy1 # window height ww = wx2 - wx1 # window width scale = np.array([wh, ww, wh, ww]) # Convert boxes to normalized coordinates on the window boxes = np.divide(boxes - shift, scale) # box相对window坐标规范化 # Convert boxes to pixel coordinates on the original image boxes = utils.denorm_boxes(boxes, original_image_shape[:2]) # box相对原图解规范化 # Filter out detections with zero area. Happens in early training when # network weights are still random exclude_ix = np.where( (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] if exclude_ix.shape[0] > 0: boxes = np.delete(boxes, exclude_ix, axis=0) class_ids = np.delete(class_ids, exclude_ix, axis=0) scores = np.delete(scores, exclude_ix, axis=0) masks = np.delete(masks, exclude_ix, axis=0) N = class_ids.shape[0] # Resize masks to original image size and set boundary threshold. full_masks = [] for i in range(N): # 单个box操作 # Convert neural network mask to full size mask full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape) full_masks.append(full_mask) full_masks = np.stack(full_masks, axis=-1)\ if full_masks else np.empty(original_image_shape[:2] + (0,)) # [n, (y1, x1, y2, x2)] # [n, class_id] # [n, class_id] # [h, w, n] return boxes, class_ids, scores, full_masks
为了将输出结果格式还原,我们需要进行如下几步:
剔除为了凑齐DETECTION_MAX_INSTANCES 填充的全0检测结果
将box放缩回原始图片对应尺寸
剔除面积为0的box
mask输出尺寸还原
在网络中操作的box尺寸为基于输入图片的规范化坐标,window为像素坐标,所以我们先将window相对输入图片规范化,使得window和box处于同一坐标系,然后这两者坐标就可以直接交互了,使box相对window规范化,此时box坐标尺寸都是window的相对值,而window和原始图片是直接有映射关系的,所以box遵循其关系,映射回原始像素大小即可。
完成box映射后,我们开始对mask进行处理。
Mask信息重映射:utils.unmold_mask函数
utils.unmold_mask受调用于unmold_detections尾部:
# Resize masks to original image size and set boundary threshold. full_masks = [] for i in range(N): # 单个box操作 # Convert neural network mask to full size mask full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape) full_masks.append(full_mask) full_masks = np.stack(full_masks, axis=-1)\ if full_masks else np.empty(original_image_shape[:2] + (0,))
首先重申我们的unmold_detections函数是对单张图片进行处理的,而mask处理进一步的是对每一个检测框进行处理的,
def unmold_mask(mask, bbox, image_shape): """Converts a mask generated by the neural network to a format similar to its original shape. mask: [height, width] of type float. A small, typically 28x28 mask. bbox: [y1, x1, y2, x2]. The box to fit the mask in. Returns a binary mask with the same size as the original image. """ threshold = 0.5 y1, x1, y2, x2 = bbox mask = resize(mask, (y2 - y1, x2 - x1)) mask = np.where(mask >= threshold, 1, 0).astype(np.bool) # Put the mask in the right location. full_mask = np.zeros(image_shape[:2], dtype=np.bool) full_mask[y1:y2, x1:x2] = mask return full_mask
我们在inference中输出的mask信息仅仅是一般的生成网络输出,所以为了得到掩码格式我们需要一个阈值。明确了这个概念,下一步就简单了,我们将mask输出放缩到对应的box大小即可(此时的box已经相对原始图片进行了放缩,是像素坐标),然后将放缩后的掩码按照box相对原始图片的位置贴在一张和原始图片等大的空白图片上。
我们对每一个检测目标做这个操作,就可以得到等同于检测目标数的原始图片大小的掩码图片(每个掩码图片上有一个掩码对象),将之按照axis=-1拼接,最终获取[h, w, n]格式输出,hw为原始图片大小,n为最终检测到的目标数目。
最终,将计算结果返回,退出函数。
# [n, (y1, x1, y2, x2)] # [n, class_id] # [n, class_id] # [h, w, n] return boxes, class_ids, scores, full_masks
实际调用如下: