《动手学深度学习》系列笔记 —— 语言模型(n元语法、随机采样、连续采样)

目录

  • 1. 语言模型
  • 2. n元语法
  • 3. 语言模型数据集
  • 4. 时序数据的采样
    • 4.1 随机采样
    • 4.2 相邻采样


一段自然语言文本可以看作是一个离散时间序列,给定一个长度为\(T\)的词的序列\(w_1, w_2, \ldots, w_T\),语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

\[ P(w_1, w_2, \ldots, w_T). \]

1. 语言模型

假设序列\(w_1, w_2, \ldots, w_T\)中的每个词是依次生成的,我们有

例如,一段含有4个词的文本序列的概率

\[ P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3). \]

语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,\(w_1\)的概率可以计算为:

其中\(n(w_1)\)为语料库中以\(w_1\)作为第一个词的文本的数量,\(n\)为语料库中文本的总数量。

类似的,给定\(w_1\)情况下,\(w_2\)的条件概率可以计算为:

其中\(n(w_1, w_2)\)为语料库中以\(w_1\)作为第一个词,\(w_2\)作为第二个词的文本的数量。

2. n元语法

序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。\(n\)元语法通过马尔可夫假设一个词的出现只与前面\(n\)个词相关,即\(n\)阶马尔可夫链(Markov chain of order \(n\))来简化模型。如果\(n=1\),那么有\(P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)\)。基于\(n-1\)阶马尔可夫链,我们可以将语言模型改写为

\[ P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) . \]

以上也叫\(n\)元语法(\(n\)-grams),它是基于\(n - 1\)阶马尔可夫链的概率语言模型。例如,当\(n=2\)时,含有4个词的文本序列的概率就可以改写为:

\(n\)分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。
例如,长度为4的序列\(w_1, w_2, w_3, w_4\)在一元语法、二元语法和三元语法中的概率分别为

\(n\)较小时,\(n\)元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当\(n\)较大时,\(n\)元语法需要计算并存储大量的词频和多词相邻频率。

  • n元语法的缺陷有哪些?
    1. 参数空间过大
    2. 数据稀疏

3. 语言模型数据集

3.1 读取数据集

with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
    corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]

3.2 建立字符索引

idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)

corpus_indices = [char_to_idx[char] for char in corpus_chars]  # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)

定义函数load_data_jay_lyrics,在后续章节中直接调用。

def load_data_jay_lyrics():
    with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
        corpus_chars = f.read()
    corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
    corpus_chars = corpus_chars[0:10000]
    idx_to_char = list(set(corpus_chars))
    char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
    vocab_size = len(char_to_idx)
    corpus_indices = [char_to_idx[char] for char in corpus_chars]
    return corpus_indices, char_to_idx, idx_to_char, vocab_size

4. 时序数据的采样

在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即\(X\)=“想要有直升”,\(Y\)=“要有直升机”。

现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:

  • \(X\):“想要有直升”,\(Y\):“要有直升机”
  • \(X\):“要有直升机”,\(Y\):“有直升机,”
  • \(X\):“有直升机,”,\(Y\):“直升机,想”
  • ...
  • \(X\):“要和你飞到”,\(Y\):“和你飞到宇”
  • \(X\):“和你飞到宇”,\(Y\):“你飞到宇宙”
  • \(X\):“你飞到宇宙”,\(Y\):“飞到宇宙去”

可以看到,如果序列的长度为\(T\),时间步数为\(n\),那么一共有\(T-n\)个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

4.1 随机采样

下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。

import torch
import random
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
    # 减1是因为对于长度为n的序列,X最多只有包含其中的前n - 1个字符
    num_examples = (len(corpus_indices) - 1) // num_steps  # 下取整,得到不重叠情况下的样本个数
    example_indices = [i * num_steps for i in range(num_examples)]  # 每个样本的第一个字符在corpus_indices中的下标
    random.shuffle(example_indices)

    def _data(i):
        # 返回从i开始的长为num_steps的序列
        return corpus_indices[i: i + num_steps]
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    for i in range(0, num_examples, batch_size):
        # 每次选出batch_size个随机样本
        batch_indices = example_indices[i: i + batch_size]  # 当前batch的各个样本的首字符的下标
        X = [_data(j) for j in batch_indices]
        Y = [_data(j + 1) for j in batch_indices]
        yield torch.tensor(X, device=device), torch.tensor(Y, device=device)

测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X和标签Y

my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')

《动手学深度学习》系列笔记 —— 语言模型(n元语法、随机采样、连续采样)_第1张图片

4.2 相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。

def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    corpus_len = len(corpus_indices) // batch_size * batch_size  # 保留下来的序列的长度
    corpus_indices = corpus_indices[: corpus_len]  # 仅保留前corpus_len个字符
    indices = torch.tensor(corpus_indices, device=device)
    indices = indices.view(batch_size, -1)  # resize成(batch_size, )
    batch_num = (indices.shape[1] - 1) // num_steps
    for i in range(batch_num):
        i = i * num_steps
        X = indices[:, i: i + num_steps]
        Y = indices[:, i + 1: i + num_steps + 1]
        yield X, Y

同样的设置下,打印相邻采样每次读取的小批量样本的输入X和标签Y。相邻的两个随机小批量在原始序列上的位置相毗邻。

for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):
    print('X: ', X, '\nY:', Y, '\n')

my_seq = list(range(11))
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=2):
    print('X: ', X, '\nY:', Y, '\n')

《动手学深度学习》系列笔记 —— 语言模型(n元语法、随机采样、连续采样)_第2张图片

你可能感兴趣的:(《动手学深度学习》系列笔记 —— 语言模型(n元语法、随机采样、连续采样))