一、分治算法概念
“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换) 。
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、分治法的设计思想
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
三、分治策略
对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
四、分治法实现步骤
①分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
②解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
③合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P)
- if |P|≤n0
- then return(ADHOC(P))
- 将P分解为较小的子问题P1,P2,…,Pk
- for i←1 to k
- do yi ← Divide-and-Conquer(Pi) 递归解决Pi
- T ← MERGE(y1,y2,…,yk) 合并子问题
- return(T)
五、可使用分治法求解的一些经典问题
(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔
六、汉诺塔
[java实现]
public static void main(String[] args) {
solve(3);
}
public static void solve(int n) {
// 已知条件n个圆盘和A、B、C三根石柱
hanoi(n, "A", "B", "C");
}
/**
* 若要让第n个圆盘成功从A移动到C,需要让前n-1个圆盘先从A移动到B,然后让第n个圆盘从A移动到C,
* 最后让第n-1个圆盘从B移动到C,至于如何将前n-1个圆盘从A移动到B或者从A移动到C,仅仅是和父问
* 题相同的子问题,采用父问题的解决方案即可。
*/
private static void hanoi(int n, String a, String b, String c) {
if (n == 1) {
// 只有一个圆盘时直接从A石柱移动到C石柱
move(n, a, c);
} else {
// 将前n-1个圆盘从石柱A移动到石柱B
hanoi(n - 1, a, c, b);
// 将第n号圆盘从石柱A移动到石柱C
move(n, a, c);
// 将前n-1个圆盘从石柱B移动到石柱C
hanoi(n - 1, b, a, c);
}
}
private static void move(int n, String i, String j) {
System.out.println("第" + n + "个圆盘," + "从" + i + "移动到" + j);
}
运行截图
[JScript实现]
hano
there will be showing result for you.
A
B
C
http://192.168.45.2:8080/lianxi/js.jsp
运行截图
[python实现]
import turtle
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items)
def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(10)
t.speed(100)
t.goto(400*(k-1), 100)
t.down()
t.goto(400*(k-1), -100)
t.goto(400*(k-1)-20, -100)
t.goto(400*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的poles[0]
drawpole_1(1)#画出汉诺塔的poles[1]
drawpole_1(2)#画出汉诺塔的poles[2]
def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,8-i)
plates[i].goto(-400,-90+20*i)
plates[i].showturtle()
return plates
def pole_stack():#制造poles的栈
poles=[Stack() for i in range(3)]
return poles
def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-1)*400,150)
plates[mov].goto((tp-1)*400,150)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-1)*400,-90+20*l)
def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole)
myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()