Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7]
might become [4,5,6,7,0,1,2]
).
You are given a target value to search. If found in the array return its index, otherwise return -1
.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2]
, target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2]
, target = 3 Output: -1
1 class Solution { 2 public int search(int[] nums, int target) { 3 if (nums.length == 0) return -1; 4 int l = 0, r = nums.length - 1; 5 int n = nums.length; 6 while (l < r) { 7 int mid = (l + r) >> 1; 8 if (target < nums[mid]) { 9 if (nums[r] > nums[l] || nums[mid] <= nums[r]) r = mid - 1; 10 else { 11 if (target <= nums[r]) l = mid + 1; 12 else r = mid - 1; 13 } 14 } else if (target > nums[mid]) { 15 if (nums[r] > nums[l] || nums[mid] >= nums[l]) l = mid + 1; 16 else { 17 if (target <= nums[r]) { 18 l = mid + 1; 19 } else { 20 r = mid - 1; 21 } 22 } 23 } else { 24 return mid; 25 } 26 } 27 if (l >= n || r < 0) return -1; 28 return nums[l] == target ? l: -1; 29 } 30 }
1 class Solution { 2 public int search(int[] nums, int target) { 3 if (nums.length == 0) return -1; 4 int n = nums.length; 5 int l = 0, r = n - 1; 6 while (l < r) { 7 int mid = (l + r) >> 1; 8 if (nums[mid] > nums[r]) { 9 l = mid + 1; 10 } else { 11 r = mid; 12 } 13 } 14 System.out.println(l); 15 int offset = l; 16 l = 0; 17 r = n - 1; 18 while (l < r) { 19 int mid = (l + r) >> 1; 20 //System.out.println(l + " " + mid + " " + r); 21 if (target < nums[(mid + offset) % n]) { 22 r = mid - 1; 23 } else if(target > nums[(mid + offset) % n]) { 24 l = mid + 1; 25 26 } else { 27 return (mid + offset) % n; 28 } 29 } 30 31 return nums[(l + offset) % n] == target ? (l + offset) % n : -1; 32 33 } 34 }
1 class Solution { 2 public int check(int[] nums, int target, int s, int e) { 3 4 5 int l = s, r = e; 6 while (l < r) { 7 int mid = (l + r) >> 1; 8 if (target < nums[mid]) { 9 r = mid - 1; 10 } else if (target > nums[mid]) { 11 l = mid + 1; 12 13 } else { 14 return mid; 15 } 16 } 17 18 System.out.println("l = " + l); 19 return nums[l] == target ? l : -1; 20 21 } 22 public int search(int[] nums, int target) { 23 int n = nums.length; 24 if (n == 0) return -1; 25 int l = 0, r = n - 1; 26 while (l < r) { 27 int mid = (l + r) >> 1; 28 if (nums[l] < nums[mid]) { 29 int temp = check(nums, target, l, mid); 30 if (temp != -1) { 31 return temp; 32 } else { 33 l = mid + 1; 34 } 35 } else { 36 int temp = check(nums, target, mid + 1, r); 37 if (temp != -1) { 38 return temp; 39 } else { 40 r = mid; 41 } 42 } 43 } 44 return nums[l] == target ? l : -1; 45 46 } 47 }