【题解】Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths Codeforces 741D DSU on Tree

Prelude

很好的模板题。
传送到Codeforces:(* ̄3 ̄)╭


Solution

首先要会DSU on Tree,不会的看这里:(❤ ω ❤)。
众所周知DSU on Tree是可以用来处理子树信息的,但是有时候也可以用来处理链上信息。
IOI 2011 Race是一道著名的点分治模板题,要求统计链信息,也可以用DSU on Tree来做,题目链接在这里:(✿◕‿◕✿)。
基本思路和点分治是一样的,对于每个点u,我们统计出所有经过u的路径的信息。
于是我们有了一个非常好的思路:统计每个点u的时候,我们记录下u的所有子孙节点到u的信息,放在某个数组里面。
以这道题为例子,我们把每个字符串压缩为一个二进制串,然后就可以记录u的每个后继节点到u的路径所形成的字符串。
但是问题来了,我们要保留重儿子的信息,但是节点u和她的重儿子之间有一个字母,我们要把这个字母加到重儿子的所有后继节点上,这不是就退化成了暴力了么?
对于IOI 2011 Race这样的题,我们可以选择用数据结构维护,于是复杂度多了一个log。
当然还有更简单的做法,对于本题和IOI 2011 Race这样的题,链上的信息是可减的,于是我们可以不保存“后继节点到点u”的信息,而是保存“后继节点到根”的信息,然后在统计的时候再减去“u到根的信息”。
每个节点到根的信息是不会变的,就不需要维护了,又因为路径信息可减,所以处理起来也很方便。
当然,对于不可减的路径信息,可以选择用数据结构维护。
当然,如果维护不了的话还是写好写好调的点分治吧qwq。


Code

#include 
#include 
#include 

using namespace std;
const int MAXN = 500010;
const int INF = 0x3f3f3f3f;
int _w;

int n, ans[MAXN];

namespace G {
    int head[MAXN], nxt[MAXN], to[MAXN], val[MAXN], eid;
    void init() {
        memset(head, -1, sizeof head);
    }
    void adde( int u, int v, int w ) {
        to[eid] = v, val[eid] = w;
        nxt[eid] = head[u], head[u] = eid++;
    }
}

int sz[MAXN], dep[MAXN], pa[MAXN], son[MAXN], str[MAXN];
int prelude( int u, int fa, int d, int s ) {
    using namespace G;
    sz[u] = 1, dep[u] = d, pa[u] = fa, str[u] = s;
    for( int i = head[u]; ~i; i = nxt[i] ) {
        int v = to[i], t = 1< sz[son[u]] )
            son[u] = v;
    }
    return sz[u];
}

int maxd[1<<22];

void ans_node( int s, int d, int &ans ) {
    ans = max(ans, d + maxd[s]);
    for( int i = 0; i < 22; ++i )
        ans = max(ans, d + maxd[s^(1<

你可能感兴趣的:(【题解】Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths Codeforces 741D DSU on Tree)