第一道 A 掉的严格意义上的组合计数题,特来纪念一发。
第一次真正接触到这种类型的题,给人感觉好像思维得很发散才行……
对于一个排列 \(p_1,p_2,\dots,p_n\),对于每个 \(i\) 向 \(p_i\) 连一条边,可以发现整个构成了一个由若干环组成的图,目标是将这些环变为自环。
引理:把长度为 \(n\) 的环变为 \(n\) 个自环,最少交换次数为 \(n-1\)。
用归纳法证,对于当前情况,任意一次交换都将其拆为两个环,由淘汰赛法则可知引理成立。
记 \(F_n\) 表示在最少交换次数下把长度为 \(n\) 的环变为 \(n\) 个自环,有多少种交换方式。由前所述,我们每次都将其拆为两个环,不妨设两个环长度为 \(x,y\),并记 \(T(x,y)\) 表示有多少种方法可将一个长度为 \(n\) 的环变为长度为 \(x,y\) 的两个环,那么当 \(n\) 为偶数且 \(x=y\) 时有 \(T(x,y)=\frac{n}{2}\),其他情况 \(T(x,y)=n\)。由于 \(x\) 环与 \(y\) 环的操作互不干扰,两边的操作可以随意排列,因此这里就是一个多重集的全排列。
于是有了递归表达式: \[F_n=\sum_{x+y=n}\left(T(x,y)F_xF_y\frac{(n-2)!}{(x-1)!(y-1)!}\right)\] 对于题目中的所有 \(k\) 个环,记它们的长度为 \(\{l_k\}\),最终答案为: \[\prod^{k}_{i=1}F_{l_{i}}\dfrac{(n-k)!}{\prod^{k}_{i=1}(l_i-1)!}\] 还没完,经过JOJO的洗礼之后发现 \(F_n=n^{n-2}\)!复杂度立马降为 \(O(n\log n)\)……
(找环这个骚操作是照题解区 dalao 学的,只能 orz
#include
using namespace std;
typedef long long ll;
const int N=1e5+5;
const ll mod=1e9+9;
int n,a[N],L[N],cnt;
ll fac[N]={1,1},F[N]={0,1};
bool vis[N];
ll qpow(ll bas,ll p)
{
ll res=1; bas%=mod;
for(;p;p>>=1)
{
if(p&1) res=res*bas%mod;
bas=bas*bas%mod;
}
return res;
}
int dfs(int x)
{
vis[x]=1;
if(vis[a[x]]) return 1;
return dfs(a[x])+1;
}
int main()
{
int T; scanf("%d",&T);
for(int i=2;i