- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- 记录一个异常检测库
STO检测王
深度学习
https://github.com/openvinotoolkit/anomalib/tree/main关于一个异常检测库,包括最先进的算法和功能,如实验管理,超参数优化和边缘推理。
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- Syslog 日志分析与异常检测技巧
运维知识
系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Grep工具:精准日志文本搜索Grep是一个简单的搜索工具,在所有Linux发行版中都是内置的,也可用于Windows和Mac操作系统。你可以在命令行界面(CLI)中执行简单的文本查询,以提取所需的日志。语法
- 云原生SLO与AIOps的完美结合:智能运维新趋势
AI云原生与云计算技术学院
云原生ai
云原生SLO与AIOps的完美结合:智能运维新趋势关键词:云原生、SLO、AIOps、智能运维、服务等级目标、自动化运维、机器学习摘要:本文深入探讨云原生环境下服务等级目标(SLO)与智能运维(AIOps)的融合实践。通过解析SLO的核心原理与AIOps的技术架构,揭示两者在指标定义、异常检测、自动化修复等环节的协同机制。结合具体算法实现、数学模型分析与项目实战案例,展示如何通过数据驱动的智能运维
- 物联网与AI驱动的智能宿舍管理解决方案
本文还有配套的精品资源,点击获取简介:智能宿舍管理系统通过物联网、云计算和人工智能技术相结合,提高宿舍管理效率和学生住宿体验。该系统集成了智能门锁、传感器、能源管理系统等硬件设备,并与软件平台结合实现远程监控、自动化控制和数据分析。它还包含了实时监控、数据处理、远程操作、智能分析、异常检测和用户画像等功能,以确保高效管理、安全性和个性化服务。此外,系统设计注重加密通信、访问控制和隐私保护,以保障数
- 机器学习专栏(13):数据探索三重奏——从地理热力图到特征工程的财富密码
Sonal_Lynn
人工智能专题机器学习python人工智能深度学习算法开发语言
目录导言:当数据点连成黄金海岸线一、地理可视化:数据中的加州淘金热1.1基础地理散点图1.2高密度区域透视术二、相关性解密:数字背后的财富公式2.1皮尔逊相关系数矩阵2.2非线性关系发现术三、特征炼金术:创造新的财富密码3.1特征组合公式库3.2相关性进化史四、异常数据猎手:揪出数据中的"叛徒"4.1价格天花板检测4.2时空异常检测五、工业级探索工具箱5.1自动化数据透视5.2探索流程checkl
- 网络安全项目实战:Python在网络安全中的应用
kleo3270
本文还有配套的精品资源,点击获取简介:网络安全项目工程是一个用Python编写的程序,重点在于实现特定的安全功能或进行网络安全性分析。本项目详细解析了如何使用Python执行特定命令以实现网络安全性,涵盖了网络编程、加密、数据分析、Web安全、认证授权、异常检测等技术。同时,还涉及到网络扫描、渗透测试以及入侵检测系统,使用Python库进行各种网络安全操作。1.Python在网络安全中的应用概述网
- 探秘 Drain3:一款高效日志异常检测神器
尚舰舸Elsie
探秘Drain3:一款高效日志异常检测神器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的日志异常检测系统,由LogPAI团队开发并开源。它旨在帮助运维人员和数据科学家快速发现系统日志中的异常行为,从而及时预测和处理潜在的问题,提升系统的稳定性和安全性。技术分析Drain3的核心技术是利用一维卷积神经网络(1DConvolutionalNeuralNet
- C#与人工智能:使用Cognitive Services进行情感分析
墨瑾轩
一起学学C#【一】c#人工智能flask
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣嘿嘿,亲爱的技术探险家们!今天我们要一起探索C#和人工智能的奇妙世界,看看如何使用微软的CognitiveServices来进行情感分析。准备好了吗?让我们踏上这段智能分析的奇幻之旅!引言:情感分析的魔力♀️在人工智能的魔法世界里,情感分析是一种能够理解文本
- 机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术
全息架构师
AI行业应用实战先锋机器学习算法深度学习
机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术引言“数据中的异常往往蕴含着最有价值的信息!从金融欺诈检测到工业设备故障预警,从网络安全到医疗诊断,异常检测技术正在守护着各个领域的安全底线。”异常检测是机器学习中极具挑战性又极具价值的领域,它旨在识别数据中与大多数实例显著不同的异常模式。本文将系统讲解异常检测的核心算法,从传统的统计方法到前沿的深度学习技术,通过金融反欺诈
- 机器学习在后端告警系统中的应用:异常检测新思路
后端开发笔记
机器学习机器人人工智能ai
机器学习在后端告警系统中的应用:异常检测新思路关键词:后端告警系统、异常检测、机器学习、时序数据、误报率优化摘要:传统后端告警系统依赖固定阈值或简单规则,常因“大促误报”“节假日抽风”等问题被运维工程师吐槽。本文将带您探索如何用机器学习给告警系统装上“智能大脑”,从“机械哨兵”升级为“动态侦探”。我们将通过生活案例、算法原理解析、实战代码演示,一步步揭开机器学习在异常检测中的应用奥秘,帮您理解如何
- 工业物联网(IIoT)高保真架构案例
深山技术宅
物联网物联网架构数据库
以下是为您精心设计的工业物联网(IIoT)高保真架构案例,涵盖底层设备接入、边缘计算、云边协同及安全体系,全部基于真实工业场景提炼,附带技术决策要点和雷区警示:案例一:钢铁厂轧机预测性维护系统架构拓扑云端边缘层设备层ProfinetModbusTCPS7-300MQTTIIoT平台时序数据库数字孪生体维护工单系统边缘计算节点实时计算引擎FFT频谱分析温度场重建异常检测模型边缘网关轧机振动传感器红外
- Task01. 时序数据与 PyPOTS 介绍
三分梦~
python机器学习时序数据库数据挖掘
Task01.时序数据与PyPOTS介绍Task01.时序数据与PyPOTS介绍1.时间序列数据介绍️举例:与i.i.d数据的区别示例:1.1时间序列数据的类型1.2常见时间序列数据示例1.3时间序列研究与应用方向主要任务:1.预测(Forecasting)2.分类(Classification)3.聚类(Clustering)4.异常检测(AnomalyDetection)5.时间序列生成(Ge
- 人工智能混合编程实践:C++调用封装好的DLL进行图像超分重建(v2.0)
FriendshipT
人工智能混合编程实践人工智能c++开发语言超分辨率重建图像处理
人工智能混合编程实践:C++调用封装好的DLL进行图像超分重建(v2.0)前言相关介绍C++简介ONNX简介ONNXRuntime简介**核心特点**DLL简介**核心特点****创建与使用****应用场景****优点与挑战**图像异常检测简介应用场景前提条件实验环境项目结构C++调用封装好的DLL进行图像超分重建C++调用dll的相关代码framework.hpch.hcxx_infer_sr.
- 机器学习笔记【Week9】
kuiini
人工智能机器学习人工智能
一、异常检测问题动机在现实中,我们经常会遇到“异常检测”的任务:识别罕见、异常、不符合正常模式的数据点。例:工业设备故障检测,银行欺诈识别,异常流量检测等。核心特点:异常样本稀少,难以用监督学习训练模型。二、高斯分布建立算法前,需要假设每个特征满足高斯(正态)分布。在单一特征xjx_jxj上:p(xj;μj,σj2)=12π σjexp(−(xj−μj)22σj2)p(x_j;\mu_j,\si
- Web 架构之AI赋能:智能流量调度与异常检测
懂搬砖
web架构原力计划前端架构
文章目录摘要思维导图正文智能流量调度传统流量调度问题AI赋能流量调度原理AI流量调度实现方法应用案例异常检测传统异常检测局限AI异常检测原理AI异常检测实现方法应用案例总结摘要在当今数字化时代,Web架构面临着高并发流量和安全威胁的双重挑战。传统的流量调度和异常检测方法已难以满足日益复杂的业务需求。本文探讨了如何将人工智能(AI)技术应用于Web架构中的流量调度和异常检测,介绍了相关的技术原理、实
- 基于YOLOv8的人脸识别与跟踪系统设计与实现
YOLO实战营
YOLOui目标检测目标跟踪深度学习
1.项目背景与意义随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可
- 智能数据桥梁:Java Excel适配器对接数据库表的AI赋能实践(支持主从表)
领码科技
低代码技能篇人工智能excelJava适配器Excel数据导入数据库转换主从表AI数据清洗
摘要随着企业数据量爆发式增长,如何高效、准确地将Excel数据导入数据库成为关键需求。本文聚焦“适配器模式”在Excel与Java数据库交互中的核心作用,结合AI技术实现智能数据识别、自动清洗与异常检测,打造灵活、高性能的导入解决方案。特别地,本文支持复杂业务中的主从表(主表与明细表)数据导入,实现先处理主表获取主键,再动态映射并插入明细表数据,事务管理确保多表数据一致性,错误处理覆盖跨表场景,提
- 2025年ALL IN ONE开源渗透测试软件推荐集合:
CIb0la
国产Llinux运维crackkalilinux程序人生安全运维测试工具
ALLINONEAWSOMECYBERSECRESOURCESAllopensourceresourcesAwesomeRedTeamOpshttps://github.com/CyberSecurityUP/Awesome-Red-Team-OperationsAwesomeRedTeaminghttps://github.com/yeyintminthuhtut/Awesome-Red-Tea
- 西电【网络与协议安全】课程期末复习的一些可用情报
框架主义者
网络安全
来自2022年春的古早遗留档案,有人需要这个,我就发一下吧。网络安全法律法规大作业字数不少于3000字:(1)论文首页,标明论文题目、姓名、学号、电话和Email(2)论文格式:小四号字体,1.25倍行距复习重点试卷构成1020304010选择20填空(可有意思了)8简答2综合总体比较简单,综合题非常简单???不要看PPT,要看书给一个很简单的场景,协议,功能公钥、MAC、混合应用异常检测不考第一
- 从 “被动拦截” 到 “智能预判”:下一代防火墙的五大核心技术突破
柏睿网络
人工智能
传统防火墙如同仅能按"剧本"执行的机械门卫,面对复杂多变的网络威胁时,常因规则滞后、检测粗放而陷入被动。下一代防火墙(NGFW)通过五大核心技术突破,构建起以"智能预判"为核心的主动防御体系,实现从"事后响应"到"事前阻断"的范式革命。一、AI驱动的威胁检测引擎:从规则匹配到行为建模技术突破机器学习驱动的异常检测抛弃传统的"特征码匹配"模式,采用无监督学习算法(如孤立森林、VAE变分自编码器)构建
- 构筑多元视角下的智能安全能力提升之道
芯盾时代
安全网络人工智能网络安全
面对日益专业化、隐蔽化的网络攻击,传统安全防御能力在实时性、精准性和可持续性层面遭遇严峻挑战。人工智能技术通过其强大的数据解析力、模式识别力与决策自动化能力,正在重塑网络安全能力的价值,推动安全体系完成从“被动响应”到“主动免疫”的根本性变革。在威胁检测方面,人工智能通过无监督学习构建动态基线模型,实时解析网络流量、终端行为及用户操作日志,突破传统特征库对已知威胁的依赖。基于深度神经网络的异常检测
- DeepSeek引爆AI工业应用之AI赋能AMHS
爱吃青菜的大力水手
人工智能自动化持续部署开源语言模型
中国半导体AMHS关键系统解析及AI赋能本文深入探讨了中国半导体工厂中AMHS(自动物料搬运系统)的关键技术架构,包括MCS/TCS/VCS控制系统、OHT小车、无线供电轨道等核心模块,并详细阐述了如何利用人工智能(如强化学习、神经网络及DeepSeek大语言模型)赋能AMHS,实现智能调度、预测性维护、异常检测和自然语言交互。文章中还提供了软件架构设计、代码示例和数学模型的介绍,旨在为行业内技术
- 聚类算法性能对比:K-means vs DBSCAN vs 层次聚类
AI智能探索者
算法聚类kmeansai
聚类算法性能对比:K-meansvsDBSCANvs层次聚类关键词:聚类算法、K-means、DBSCAN、层次聚类、性能对比、机器学习、无监督学习摘要:聚类是无监督学习的核心任务之一,广泛应用于用户分群、图像分割、异常检测等场景。本文将用“分水果”“找朋友”“建家谱”等生活化比喻,从原理、优缺点到实战场景,一步一步对比K-means、DBSCAN、层次聚类三种主流算法。无论你是刚入门的机器学习爱
- 聚类算法参数调优指南:如何获得最佳分组效果
AIGC应用创新大全
算法聚类数据挖掘ai
聚类算法参数调优指南:如何获得最佳分组效果关键词:聚类算法、参数调优、K-means、DBSCAN、轮廓系数、Calinski-Harabasz、高维数据摘要:聚类算法是无监督学习的核心工具,广泛用于用户分群、图像分割、异常检测等场景。但很多人发现:即使选对了算法,参数设置不当也会导致“分组混乱”或“簇无意义”。本文将用“分糖果”“找人群”等生活案例,结合Python代码实战,从底层逻辑到调优技巧
- 扫地机产品异物进入吸尘口堵塞异常检测方案
悟空胆好小
清洁服务机器人人工智能机器人嵌入式硬件
扫地机产品异物进入吸尘口堵塞异常的检测方案文章目录扫地机产品异物进入吸尘口堵塞异常的检测方案一.背景二.石头的音频异常检测的方案2.1音频检测触发点2.1.1时间周期2.1.2根据清洁机器人清扫模式或清扫区域污渍类型,即当清扫模式为深度清洁模式或清扫区域污渍类型为重度污渍级别时,确定触发声音检测异物模式。2.1.33、根据检测到的主刷工作电流值与预置的主刷电流阈值的比较结果,当主刷工作电流值大于主
- DDR DFI 5.2 协议接口学习梳理笔记01
zilan23
LPDDR6/LPDDR5技术硬件工程
备注:本文新增对各种时钟含义做了明确定义区分,避免大家产生误解,这也是5.2版本新引入的。1.前言截止2025年5月,DFI协议最新版本为5.2,我们首先看一下过去几代的演进:DFI全称DDRPHYInterface,是一种接口协议,定义了Controller和PHY之间接口的信号、时序以及交互行为。DFI应用场景包含:DDR1、DDR2、DDR3、DDR4、DDR4RDIMM、DDR4LRDIM
- 日志异常检测初探
Mark_Aussie
AIOps机器学习
常用日志异常识别算法,LogClass算法是基于有数据标签的场景(即哪些日志是正常的,哪些日志是异常的);DeepLog是无监督的方法,不需要提前准备数据标签;日志的根因定位算法FOCUS,是基于系统日志快速分析是什么条件造成了响应时延增加;SyslogDigest是专门针对网络设备的syslog进行分析的算法,可从原始syslog产生有实际含义的、可按优先级排序的网络事件;FT-tree是一种通
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号