[LeetCode] Max Points on a Line

Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

Solution:

/**
 * Definition for a point.
 * struct Point {
 *     int x;
 *     int y;
 *     Point() : x(0), y(0) {}
 *     Point(int a, int b) : x(a), y(b) {}
 * };
 */
class Solution {
public:
    double PI = 3.1415926;
    
    double computeAngle(int x, int y, int xx, int yy)
{
  if(x == xx)
  {
    if(y == yy)
      return 2 * PI;
    else
      return PI;
  }
  else
    return atan((double)(yy - y) / (xx - x));
}

int maxPoints(vector<Point> &points) {
        int n = points.size();
        if(n <= 2) return n;
        double **angle = new double*[n + 1];
        int **visited = new int*[n + 1];
        for(int i = 0;i < n;i++)
        {
         angle[i] = new double[n + 1];
         visited[i] = new int[n + 1];
        }
        for(int i = 0;i < n;i++)
         {
          memset(visited[i], 0, (n + 1) * sizeof(int));
          for(int j = i;j < n;j++)
           angle[i][j] = angle[j][i] = computeAngle(points[i].x, points[i].y, points[j].x, points[j].y);
         }
        int max = 2;
        for(int i = 0;i < n;i++)
        {
          for(int j = 0;j < n;j++)
          {
            if(i == j || visited[i][j] == 1) continue;
            visited[i][j] = 1;
            //define a line by point i and j
            double curAngle = angle[i][j];
            int curNum = 2;
            for(int k = 0;k < n;k++)
            {
              if(i != k && j != k)
              {
               if(curAngle == 2 * PI)
               {
                if(angle[i][k] == 2 * PI || angle[j][k] == 2 * PI)
                {
                 curNum++;
                }
                else
                {
                  curNum++;
                  curAngle = angle[i][k];
                  visited[i][k] = visited[j][k] = visited[k][j] = visited[k][i] = 1;
                }
               }
               else
               {
                  if(angle[i][k] == curAngle)
                  {
                    curNum++;
                    visited[i][k] = visited[j][k] = visited[k][j] = visited[k][i] = 1;
                  }
               }     
              }
            }
          //  cout << i << " " << j << " :" <<curNum << endl;
            max = (curNum > max) ? curNum : max;
          }
        }
        return max;
    }
};

你可能感兴趣的:(LeetCode)