无标题文IP防水泄漏检测之浸水目测法和空气气密泄漏检测法原理上的区别章

IP防水泄漏检测之浸水目测法和空气气密泄漏检测法原理上的区别

浸水目测检漏的土方法在气密泄漏检测的领先技术前面真的太落后

目前有国内还有很多客户正在使用浸水测试进行产品的防水测试,这种方法是将产品放入指定深度的水中,观察泄漏的气泡数量并进行收集,获取产品的泄露率;然而这种方法的弊端就在于需要人为观察,大多用于抽检,或者全检后需要对产品进行烘干,测试精度低; 目前在业内开始主流的气密性检测,是用一定压力的压缩空气充气到工件中,探测其中压力损失,从而获得相应的泄露率;气密性检测更容易实现批量检测,并且可以得到精密的数据,可实现自动化检测。

浸水目检检漏的老方法

气密性检测相对水检而言,可以做到全检并且大幅度降低了检测成本,是目前测试防水等级zui有效、zui经济、zui可靠的方法。但在我们中国对于产品泄漏这块的一些理论知识及研究都不足,很多之前使用水检的客户,不知道如何从水检转换到气密性检测,气密检测的泄露率与水检的完全不同,那么,之前水检测试的所有数据如何转换到气检的参数,这就成了一个比较大的难题,这也是大部分客户还没有使用气密性检测的一个重要原因之一。

气密性密封性泄漏量率检测试验设备汽车行业中应用

摘要:排气歧管做为汽车发动机的零部件,需要满足发动机高温高压的密封条件,对性能有气密性要求,如果出现漏气现象,将会影响发动机的动力性能、排放性能以及整机的噪声,因此需要对发动机排气歧管进行气密性检测。传统的排气歧管气密性检测方法是浸水法和涂抹法,随着工业自动化和检测技术的发展,浸水法和涂抹法正逐渐被淘汰,目前比较通行的气密性检测方法是差压法气密性检测。在采用气密性检测仪的基础上,辅以定位、自动密封、电气控制、液压与气动系统构成试漏机,实现在生产线上批量生产对零件气密性进行智能检测的需求。为了满足整个生产线的节拍要求,认为气密性检测工艺参数的确定是检测效率及精度的关键影响因素。

多功能气密测试仪

(MKTRUE T-89ADP系列)

差压法气密性检测的工作原理循环包括4 个过程,即充气过程、平衡过程、检测过程和排气过程。

(1)充气过程:将系统压力调定到测试压力,打开充气阀、测漏阀,标准容器和被测工件充入压力等于测试压力的压缩空气,由于气体流动的影响,此时系统内部压力、温度都会波动,必须持续充气直至标准容器、被测工件充气完全。

(2)平衡过程:关闭充气阀、测漏阀,截断气源与标准容器、被测工件的通路,由于充气及关闭阀的动作会引起容器内气体压力的脉动,导致标准容器与被测工件间的差压不稳定,呈现出无规则的变化,必须延迟一段时间,待差压值稳定后才能测量差压变化。

(3)检测过程:检测差压传感器的输出,由于泄漏产生的压力降在测试压力附近近似的与时间成正比,因此可以测量出在一定时间内差压的变化值。

(4)排气过程:待测量完差压的变化值,标准容器、被测工件内的剩余气体通过气阀排到大气里,结束一个检测过程。

式中QL———气体泄漏流量,mL/s;Δp———差压变化量,Pa;pa———大气压力,Pa;t———产生差压Δp 相对应的测试时间,s;ΔV/Δp———差压传感器系数,取1.36×10-7mL / Pa;VR———标准容器容积,mL;VT———被测工件容积,mL;pt———测试压力,Pa。

2.1、泄漏率

工件的泄漏率实际上就是工件的允许泄漏量。工件的泄漏率取决工件的材料、结构及实际工况条件。排气歧管的泄漏率标准是发动机设计部门根据发动机性能而确定的。在实际生产中,从经济角度考虑确定泄漏率是很关键的,检测应该是在必要条件下尽可能精确,而不是越精确越好。

2.2、测试压力

通常泄漏率都要参考给定的测试压力,而测试压力都是参照工件实际工况条件确定的。被测工件疏松度高(如铸造缩松、裂纹),泄漏率正比于测试压力;疏松度低,泄漏率与测试压力的比值变小。另外随着测试压力的增高,还会带来诸如温度影响,所需平衡时间需要加长。因此,如果工况压力较大可以换算到低压状态的泄漏率,同时可在一定压力范围内进行泄漏检测,然后选择一个满足测试要求的较低的压力确定为最终的测试压力。

2.3、温度

对于密闭容器内的气体,当温度升高时其内部的压力随之升高,因而温度是影响压力变化的重要因素。

环境温度的变化以及工件的材料、几何形状、内腔容积、表面积等都会成为影响温度效应的因素。采用差压法测量时,当采用的标准容器与测量工件具有相同的几何形状及内腔容积时,由充气本身引起温度变化效应可被测试系统自身消除。在通常的测量条件下由于测试时间较短温度的影响不会十分显著。

新能源电动汽车元件的气密检测

2.4、充气时间

充气时压缩空气由受压状态进入一个密闭容器后,会引起系列的热力学、动力学变化,其压力会发生降低,标准容器与被测工件内的压力会存在显著的差异,当充气压力或测试容积增加时,这种充气引起的压力变化会更加明显。若此时进行测量,则这种压力的变化会被视作泄漏所引起的压力变化,影响测量结果的准确性。因此,应保持足够的充气时间,以保证标准容器与被测工件内的压力大致平衡。

气密测试的整个流程

2.5、平衡时间

由于充气效应的存在,在充气与检测之间增加一段平衡时间是必要的,平衡时间的长短需要根据具体的测量对象来确定。

2.6、检测时间

由于泄漏产生的压力降在测试压力附近近似的与时间成正比,可以测量出在一定时间内差压的变化值,进而计算泄漏量的大小。理论上测试时间越长,越有助于获得准确的测试精度,但这与生产线的实际需求是矛盾的,同时检测时间过长,压力降过大,压力降与时间的比例会变化,检测精度反而会降低。当工件的测试压力较高、测试容积较大、泄漏率较小时,需要延长测试时间,以保证工测试的精度。

进口气密测试仪innomatec LTC502

2.7、其他影响因素

(1)工件容积,对于一个特定工件(泄漏率一定),若工件容积越大,则相应的压力降低的速度就越低,测量时间就需要相应增加,所以为保证测量的灵敏度,就要设法减少工件的容积。

(2)试漏机结构设计,为保证测试精度,气密性测试对试漏机的密封元件的材料选择、结构设计、密封设计、工件定位夹紧等方面都有一定的要求,如:密封元件应没有弹性蠕变,耐油耐压;密封夹具必须提供适当的压力来封堵被测工件,夹紧力应该是测试压力的3倍;

零件的封堵在测量过程中必须保证其位置不发生改变;夹具支撑框架的强度要足以支撑此压力,而且各封堵气缸应有可靠的导向,确保封堵位置的准确;试漏机的封堵元件尽量不要作用在零件的非支撑结构上,如果必须则需充分考虑是否可能会对被测工件造成损坏或产生新的泄漏点等。

①在正交试验设计过程中各因子水平值应当根据工件的测试压力、检测容积等因素的变化进行适当的调整;②由于在生产现场进行试验,现场条件的波动,特别是气源压力的波动,试验中会出现异常数据,在数据处理时要剔除处理。③从表2 中我们可以看到测试条件A1B2C2、A2B2C3、A2B3C1、A3B3C2的试验结果相对都是比较好的,此时对试验结果要根据检测的精度及效率的要求进行取舍,或者加大试验次数进行重复验证。

智能手环的双工位双压力气密检测

差压法气密性检测具有检测灵敏、精度高、不受温度影响等优点,同时可以实现整个检测过程的自动化,大大缩短了检测周期,在工业生产得到了广泛应用。气密性检测工艺参数的确定是检测效率及精度的关键影响因素,通过正交试验设计方法,可以快速确定差压法气密性检测关键影响工艺参数,提高检测精度及效率。

你可能感兴趣的:(无标题文IP防水泄漏检测之浸水目测法和空气气密泄漏检测法原理上的区别章)