- 激活干部队伍
郭强GQ
在市场竞争处于劣势的情况下,用干部队伍激活的确定性,应对环境与商业变化的不确定性是组织必须做的事情。干部选拔与任用机制干部选拔与任用要真正建立起基于实际作业的履历,而不是曾经任命过的岗位履历。干部履历,一是作业履历,二是履历的附件,即个人写的自我鉴定。比如,什么地点做过什么事,证明人是谁?这些都要有真实记录。实际的项目作战经验,“上过战场、开过枪、受过伤”,永远是组织的优先标准。明确关键岗位资格要
- Java大厂面试实录:从Spring Boot到AI微服务架构的层层递进
remCoding
Java场景面试宝典JavaSpringBootSpringCloudAIKafkaRedisMicroservices
场景:互联网大厂Java后端面试面试官(严肃):请简单介绍下你参与过的项目,主要使用哪些技术栈?小曾(自信):我参与过电商平台的订单系统,用了SpringBoot+SpringCloudAlibaba,数据库是MySQL+Redis缓存,消息队列用Kafka处理异步任务。面试官(点头):不错,能具体说说订单系统如何应对高并发场景的吗?小曾:我们用了HikariCP优化数据库连接池,Redis集群做
- 11月8日
秋水长天_2fad
事件:晚上三人小组会,国栋给我们讲了他的课件思路感受:感动幸福,小小的不安想法:这是一个敞开的人,能如此和盘托出,我如此被相信,我是幸运的,也是幸福的。为什么别人对我这么好?我什么都没做啊。期待:对自己:多消化,活学活用对别人:无我的应对:记录,多理解,看到思路,看自己如何去用,才不辜负我的渴望:与人联结我的模式:收获意外惊喜时诚惶诚恐我需要做的:少计划多行动,心怀感恩,传递生命力:绽放
- 【数据结构与算法】力扣 88. 合并两个有序数组
秀秀_heo
数据结构与算法leetcode算法职场和发展
题目描述88.合并两个有序数组给你两个按非递减顺序排列的整数数组nums1**和nums2,另有两个整数m和n,分别表示nums1和nums2中的元素数目。请你合并nums2**到nums1中,使合并后的数组同样按非递减顺序排列。注意:最终,合并后数组不应由函数返回,而是存储在数组nums1中。为了应对这种情况,nums1的初始长度为m+n,其中前m个元素表示应合并的元素,后n个元素为0,应忽略。
- 【C++基础】内存对齐原则与性能影响:面试高频考点与真题解析
byte轻骑兵
#C++深度探索与实战专栏面试职场和发展
在计算机系统中,内存对齐是影响程序性能和跨平台兼容性的重要因素。无论是校招还是社招,内存对齐相关问题几乎是C/C++、嵌入式开发、操作系统等岗位的必考题。掌握内存对齐的原理和应用,不仅能应对面试,更是理解现代计算机体系结构的关键。一、内存对齐的基本概念1.1什么是内存对齐?内存对齐是指数据在内存中存储时,其起始地址必须是某个特定值(通常是数据类型大小的倍数)。例如,4字节的int类型变量应存储在4
- 微算法科技基于格密码的量子加密技术,融入LSQb算法的信息隐藏与传输过程中,实现抗量子攻击策略强化
MicroTech2025
量子计算区块链
随着量子计算技术的发展,传统加密算法面临被量子计算机破解的风险,LSQb算法也需考虑应对未来可能的量子攻击。微算法科技基于格密码的量子加密技术,融入LSQb算法的信息隐藏与传输过程中,实现抗量子攻击策略强化。格密码在面对量子攻击时具有较高的安全性,通过这种融合,能为LSQb算法提供更强大的抗攻击能力,确保信息在复杂的量子计算环境下的安全性。格密码是一种基于数学格结构的密码学方法,具有在量子计算环境
- 推荐算法召回:架构理解
Jay Kay
c++推荐算法推荐算法架构算法
一、召回服务的定位与挑战召回层是推荐系统的第一道漏斗,负责从亿级候选集中筛选出千级别的相关项,其效果直接决定推荐效果的天花板。核心挑战包括:低延迟约束:需在50ms内完成海量候选检索;高召回率要求:98%的召回率需覆盖用户多样化兴趣;数据漂移应对:实时用户行为分布变化需动态适应;误杀控制:避免优质内容被过度过滤引发用户投诉。⚙️二、召回服务核心架构1.多路召回并行召回策略实现方式适用场景规则召回基
- 游戏中的儿童1
羲有时光
在幼儿园小班游戏活动中,以拼图为例。提供怎样的拼图材料?如何基于观察给予幼儿支持?如何实现在教师支持下的自由自主自然地生长呢?首先,教师应对小班儿童拼图的年龄特点应有充分了解,这是实现幼儿自由自主自然生长的基本前提。儿童喜欢贴近生活的图片抑或较为熟悉和喜欢的图片、班级儿童在拼图能力上的发展具有一定的差异性。基于此,教师所提供的拼图图片应该是生活化的、儿童较为关注的,此外,所提供的拼图的难度应该有差
- 提升企业级数据处理效率!TDengine 四个集群优化点详解
TDengine (老段)
TDengine运维大数据数据库物联网时序数据库服务器运维tdengine
为了帮助企业更好地进行大数据处理,我们在此前TDengine3.x系列版本中进行了几项与集群相关的优化和新功能开发,以提升集群的稳定性和在异常情况下的恢复能力。这些优化包括clusterID隔离、leaderrebalance、raftlearner和restorednode。本文将对这几项重要优化进行详细阐述,以解答企业在此领域的疑问,并帮助大家更好地应对相关挑战。clusterID隔离问题fi
- 探索WPF界面的神器:Snoop
伍霜盼Ellen
探索WPF界面的神器:Snoop项目地址:https://gitcode.com/gh_mirrors/sno/snoopwpfSnoop是一款由PeteBlois发起,并由BastianSchmidt维护的开源WPF应用监视工具。它提供了一种无需调试器就能浏览和操作任何运行中WPF应用程序视觉、逻辑和自动化树的强大功能。无论是修改属性值、查看触发器还是在属性变化时设置断点,Snoop都能轻松应对
- C++面试核心知识点全面解析:从基础到高级
掌握这些核心知识点,轻松应对90%的C++技术面试一、基础语法与关键字1.1const关键字的多种用法//1.常量变量constintMAX_SIZE=100;//2.常量指针与指针常量constint*ptr1=&var;//指向常量的指针int*constptr2=&var;//常量指针constint*constptr3=&var;//指向常量的常量指针//3.常量成员函数classMyCl
- 全网最全100道C语言高频经典面试题及答案解析:C语言程序员面试题库分类总结
猿享天开
学懂C语言-C语言从入门到精通c语言c++面试
前言在计算科学领域,C语言犹如一座横跨硬件与软件的桥梁——其简洁的语法背后,承载着操作系统、数据库、嵌入式系统等基础软件的运行命脉。当开发者面对大厂面试中"用户态与内核态切换的开销量化"或"自旋锁在NUMA架构下的性能陷阱"等深度问题时,仅凭教科书知识往往难以应对。本文正是为解决这一痛点而生。我们摒弃传统面试题集的简单罗列模式,精选100个直指系统编程本质的问题,每个案例均包含:工业级场景还原:基
- 详解LLMOps,将DevOps用于大语言模型开发
大家好,在机器学习领域,随着技术的不断发展,将大型语言模型(LLMs)集成到商业产品中已成为一种趋势,同时也带来了许多挑战。为了有效应对这些挑战,数据科学家们转向了一种新型的DevOps实践LLM-OPS,专为大型语言模型的开发和维护而设计。本文将介绍LLM-OPS的核心思想,并分析这一策略如何帮助数据科学家更高效地运用DevOps的优秀实践,从而在语言模型的开发和部署过程中,提升工作效率和成果的
- 完整解读YashanDB数据库的架构与设计理念
数据库
在当今数据驱动的世界中,数据库技术的挑战愈发明显。扩展性不足、性能瓶颈、数据一致性和高可用性需求等问题,成为企业IT架构面临的重要考验。为了应对这些挑战,许多数据库系统采用了创新的设计理念和架构,以提供高效、稳健的解决方案。YashanDB作为一款现代数据库,凭借其完善的体系架构与设计思路,为用户提供了高效的数据存储与管理能力。本文旨在深入探讨YashanDB的体系架构及其设计理念,帮助技术人员和
- 如何通过YashanDB支持远程办公中的数据访问
数据库
在当今以数据驱动的商业环境中,远程办公已成为一种常态。然而,随着团队分布在不同地点,数据访问的挑战也随之增加。机构需要确保远程用户能够高效、安全地访问数据,而这涉及到性能瓶颈、数据一致性及安全性等多种问题。YashanDB作为一款高性能分布式数据库,提供了多种技术方案以有效支持远程办公中的数据访问,其独特的体系结构能够应对这些挑战。YashanDB的部署架构YashanDB支持三种不同的部署形态:
- 通过YashanDB提升大数据处理能力的指南
数据库
数据的急剧增长给数据库技术领域带来了诸多挑战,包括性能瓶颈、数据一致性问题及处理效率低下等。为了应对这些挑战,企业需采取有效的技术手段来提升大数据处理能力。YashanDB作为一款高性能的数据库产品,通过其先进的体系架构、优化的数据存储形式以及强大的并发控制能力,有效地提升了大数据环境下的处理性能。本文旨在为技术人员和决策者提供深入的技术分析和可操作的建议,通过YashanDB的功能特性来实现大数
- 面试必问的线程池原理与实战:从源码到应用全解析
混进IT圈
Java线程池面试多线程并发编程TomcatNetty
摘要:本文结合JDK官方文档、《Java并发编程实战》等权威资料,深入剖析线程池的核心原理,并通过电商、消息中间件等真实场景演示选型策略。全文包含20+代码示例、5大避坑指南,帮你轻松应对面试中的高频考点。一、线程池核心原理:从JDK源码到Tomcat扩展1.1JDK原生线程池的工作机制(附源码)JDK线程池的核心是ThreadPoolExecutor,其工作流程可概括为://核心执行逻辑(简化版
- Unity SuperScrollView插件:高效列表视图解决方案
Bobby陈兴博
本文还有配套的精品资源,点击获取简介:UnitySuperScrollView是一个为UGUI设计的高效、全面的滚动视图插件,用于创建复杂的高性能列表视图。它支持高度的自定义化,优化了性能以应对大量数据,并提供了丰富的示例和易用的API。该插件兼容Unity新版本,并通过扩展接口支持二次开发,适用于游戏、应用等多种数据展示场景。1.UnitySuperScrollView2.4.2功能概述1.1S
- 【字节跳动】数据挖掘面试题0010:解释全国人均收入下降,各省份人均收入增加的现象,属于辛普森悖论(开放性问题)
言析数智
数据挖掘常见面试题辛普森悖论局部与整体分析差异归因数据分析面试题
文章大纲一、辛普森悖论的核心定义二、现象成因:加权平均中的“权重偏移”三、数学逻辑与案例说明1.数学表达式2.具体案例四、辛普森悖论的本质:忽略“混杂因素”的影响五、生活中常见的辛普森悖论案例及应对策略1.医疗疗法效果评估2.大学录取率的性别偏差3.篮球运动员投篮效率4.公司员工绩效与部门规模如何利用辛普森悖论?(数据分析中的价值)六、总结全国人均收入下降而各省份人均收入增加的现象,确实属于辛普森
- 深入Redis:核心的缓存
Redis最主要的用途,主要有三个方面:存储数据、缓存、消息队列。其中,缓存是Redis最常用的场景。Redis使用内存作为硬盘的缓存。把用户集中访问的20%数据放到缓存中去,可以应对80%的请求。数据库是非常重要的组件,但是mysql的速度又比较慢,所以我们用Redis来作为mysql的缓存。为什么说关系型数据库性能不高?数据库把数据存储在硬盘上,硬盘的IO速度并不快。尤其是随机访问。如果查询不
- 云原生周刊:Istio 1.24.0 正式发布
云原生周刊:Istio1.24.0正式发布开源项目推荐KopfKopf是一个简洁高效的Python框架,只需几行代码即可编写KubernetesOperator。Kubernetes(K8s)作为强大的容器编排系统,虽自带命令行工具(kubectl),但在应对复杂操作时往往力不从心。通过Kopf,您可以使用Python轻松实现Kubernetes的复杂操作,包括条件判断、事件触发等,让自定义操作变
- 大模型服务的推理优化探索
半吊子全栈工匠
【引】有的事情别人不问时我们明白,一旦要我们解释它我们就不明白了,而这正是我们必须留心思索的东西。于是,开启了一次又一次的论文阅读之旅。开发并部署大模型应用肯定要考虑它们的服务成本。然而,钱并不是唯一的考虑因素,如果不能解决模型性能方面的问题,即使有很大的预算,大模型服务仍会受到影响。本文尝试讨论将LLM推理服务更改为高吞吐量引擎的挑战与应对方法。1.大模型服务面临的挑战大模型的能力令人惊叹,但其
- 【Gin】HTTP 请求调试器
文章目录项目概述代码功能详解1.导入必要的包2.主函数和路由设置3.请求信息捕获4.请求参数和头信息5.请求体处理5.1JSON数据处理5.2表单数据处理5.3Multipart表单数据处理5.4其他类型数据处理6.构造响应对象7.返回JSON响应功能特点使用场景完整代码项目概述这个GinHTTP请求调试器是一个功能完整的工具,用于测试和调试前端接口调用。它能够捕获并记录所有请求信息,并以清晰的结
- 安科瑞 EMS3.0 赋能零碳园区:能耗管控 + 绿电消纳,解锁碳中和 “最优解”
简婷18701998775
能源
简婷安科瑞电气股份有限公司上海嘉定2018011、引言随着全球工业化和城市化进程的加速,能源消耗和碳排放问题日益严峻。为应对气候变化,世界各国纷纷提出碳中和目标,我国也明确提出力争2030年前实现碳达峰、2060年前实现碳中和的“双碳”战略目标。在这一背景下,零碳园区作为实现区域碳中和的重要突破口,成为推动产业绿色转型和可持续发展的关键路径。然而,零碳园区的建设面临着能源管理复杂、绿电消纳困难、减
- 零碳园区:绿色未来的新引擎
安科瑞涂志18702111382
人工智能
1、零碳园区:时代的绿色呼唤全球气候变化引发广泛关注,“零碳”理念成为时代焦点。2020年位列历史上最温暖的年份之一,2025年1月地表温度更是创下历史新高。极端天气现象严重威胁人类生存。我国提出的“双碳”目标,即力争2030年前实现碳达峰,2060年前实现碳中和,对全球气候变化的应对具有至关重要的意义。产业园区作为我国经济的重要支柱,却面临着严峻的碳排放问题,其排放量占全国总量的31%。大量工业
- 【机器学习&深度学习】为什么分类任务中类别比例应接近 1:1?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是类别不平衡?二、为什么类别比例应接近1:1?2.1⚠模型容易“偏科”2.2精确率、召回率失真2.3模型训练失衡,梯度方向偏移三、现实案例中的“灾难性后果”四、如何应对类别不平衡问题?4.1数据层面处理4.2模型训练层面优化4.3评估指标替代五、实际场景举例六、模拟场景:银行信用卡欺诈检测6.1场景描述6.2数据集情况6.3模型训练结果(未处理不平衡)6.4模型做了什么?6.5实际
- 【线上故障排查】缓存穿透攻击的识别与布隆过滤器(面试题 + 3 步追问应对 + 案例分析)
程序员岳彬
从项目到面试:Java高频面试题场景化通关指南缓存java后端springbootlinuxredis
一、高频面试题问题1:什么是缓存穿透?它对系统的核心危害是什么?参考答案:缓存穿透指的是用户请求的数据在缓存和数据库中都不存在,导致请求直接绕过缓存打到数据库。核心危害是大量无效请求会耗尽数据库资源,比如CPU、内存或连接数,严重时可能引发数据库宕机,进而导致整个系统崩溃,影响服务可用性。第一步追问:缓存穿透和缓存雪崩有什么本质区别?参考答案:两者本质不同。缓存穿透是请求不存在的数据,攻击或逻辑漏
- 为什么选择ER-GNSS/MINS-07?——低成本高精度的组合导航解决方案
导航技术的痛点:单一系统难以应对复杂环境无论是自动驾驶汽车、无人机巡检,还是精准农业、飞行记录仪,高精度、高可靠的导航都是核心需求。然而,传统导航技术各有短板:卫星导航(GNSS):信号易受遮挡(如城市峡谷、隧道),且易受干扰或欺骗。惯性导航(INS):自主性强,但误差随时间累积,几分钟后定位漂移。多源融合:组合导航的“智慧大脑”组合导航系统(GNSS/INS)通过多源传感器融合,结合卫星导航的长
- Go内存压力测试:模拟与应对高负载
Go高并发架构_王工
golang压力测试后端
一、引言在当今微服务架构和云原生应用盛行的时代,Go语言凭借其出色的并发处理能力和较低的资源消耗,成为构建高性能后端服务的首选语言之一。然而,随着业务规模的扩大和用户量的增长,我们的服务经常会面临突如其来的流量高峰和持续的高负载挑战。就像一辆汽车需要在极端条件下测试其性能极限一样,我们的Go应用也需要在上线前经受住内存压力测试的洗礼。这不仅能帮助我们发现潜在的内存泄漏和性能瓶颈,还能确保系统在高负
- JVM内存泄漏与内存溢出:原理详解与实战应对策略
一、核心概念深度解析内存问题一直是Java开发者面临的重要挑战,理解内存泄漏和内存溢出的本质区别是解决这类问题的第一步。1.1内存泄漏(MemoryLeak)定义:当应用程序不再需要某些对象时,由于仍然存在对这些对象的引用,导致垃圾收集器(GC)无法回收这些内存空间。关键特征:渐进式发展,如同慢性病通常由编码缺陷引起最终可能导致内存溢出1.2内存溢出(OutOfMemoryError)定义:是内存
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro