- 推荐算法_隐语义-梯度下降
_feivirus_
算法机器学习和数学推荐算法机器学习隐语义
importnumpyasnp1.模型实现"""inputrate_matrix:M行N列的评分矩阵,值为P*Q.P:初始化用户特征矩阵M*K.Q:初始化物品特征矩阵K*N.latent_feature_cnt:隐特征的向量个数max_iteration:最大迭代次数alpha:步长lamda:正则化系数output分解之后的P和Q"""defLFM_grad_desc(rate_matrix,l
- [实践应用] 深度学习之优化器
YuanDaima2048
深度学习工具使用pytorch深度学习人工智能机器学习python优化器
文章总览:YuanDaiMa2048博客文章总览深度学习之优化器1.随机梯度下降(SGD)2.动量优化(Momentum)3.自适应梯度(Adagrad)4.自适应矩估计(Adam)5.RMSprop总结其他介绍在深度学习中,优化器用于更新模型的参数,以最小化损失函数。常见的优化函数有很多种,下面是几种主流的优化器及其特点、原理和PyTorch实现:1.随机梯度下降(SGD)原理:随机梯度下降通过
- bat+ffmpeg批处理图片,图片批量转码
张雨zy
音视频ffmpeg
直接在cmd中输入//批量转码文件for%ain("*.png")doffmpeg-i"%a"-fs1024k"%~na.webp"//删除所有pngdel*.png@echooff表示执行了这条命令后关闭所有命令(包括本身这条命令)的回显。而echooff命令则表示关闭其他所有命令(不包括本身这条命令)的回显,@的作用就是关闭紧跟其后的一条命令的回显脚本完整代码写入脚本中后,需要多加一个%,例如
- MyBatis批量插入大量数据
小黑屋说YYDS
MyBatisjava
1.思路分析批量插入这个问题,我们用JDBC操作,其实就是两种思路吧:用一个for循环,把数据一条一条的插入(这种需要开启批处理)。生成一条插入sql,类似这种insertintouser(username,address)values(‘aa’,‘bb’),(‘cc’,‘dd’)…。到底哪种快呢?我们从两方面来考虑这个问题:插入SQL本身执行的效率。网络I/O。先说第一种方案,就是用for循环循
- bat批处理循环执行adb命令
erhtre
程序员adb
ping-n2127.0>nul等待2s:one::adbshellinputswipe90010007001000adbshellinputkeyevent25%KEYCODE_VOLUME_DOWN%ping-n2127.0>nulgototwo:twoadbshellinputkeyevent25%KEYCODE_VOLUME_DOWN%ping-n3127.0>nulgotoone附:An
- oracle实验-RMAN的PIPE接口
congqingm32098
数据库
RMAN的PIPE接口RMAN除了支持交互式和批处理式,还支持一种PIPE的接口,通过这种PIPE接口,可以在ORACLE中将各种命令发送给RMAN。首先,以PIPE方式启动RMAN,其中P1是管道的名称:F:>RMANPIPEP1TARGET/@TESTNOCATALOG恢复管理器:版本9.2.0.4.0-ProductionCopyright(c)1995,2002,OracleCorpora
- Microsoft Defender SmartScreen 阻止了无法识别的应用启动。运行此应用可能会导致你的电脑存在风险。
开心呆哥
microsoft
你提到的情况可能是由于Windows的安全策略导致的。当你运行批处理文件(.bat)时,Windows可能会弹出一次提示,询问是否允许该文件执行。这是为了确保用户不会意外地运行潜在的恶意脚本。有几种方法可以解决这个问题:解锁文件:在文件资源管理器中,找到你的.bat文件。右键单击文件,选择"属性"。在"常规"选项卡中,如果有一个"解锁"复选框,请勾选它。确定并尝试重新运行文件。以管理员身份运行:右
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- 大数据之flink与hive
星辰_mya
大数据flinkhive
其实吧我不太想写flink,因为线上经验确实不多,这也是我需要补的地方,没有条件创造条件,先来一篇吧flink:高性能低延迟流批一体的分布式计算框架基于事件时间对实时数据精准处理快速响应支持批处理,高效离线分析和数据挖掘数据仓库的引擎丰富数据源/接收器,集成多种数据存储格式和源,比较常见就是咱们今天的主题hive了checkpoint恢复机制,故障恢复快速恢复计算任务分布式弹性扩展,据业务灵活增加
- vllm在线推理踩坑记
懂点投资的码农
大语言模型ai语言模型python
最近在《AI大模型全栈工程师》课程里看老师推荐使用vllm部署大模型,优点就不详细介绍了,这里摘抄一段来自于Qwen2上手指南对于它的简单介绍:它易于使用,且具有最先进的服务吞吐量、高效的注意力键值内存管理(通过PagedAttention实现)、连续批处理输入请求、优化的CUDA内核等功能。至于原理就先不看了,直接上手部署,以后再来补理论知识。一、vLLM在线推理在Qwen2的上市指南里介绍了v
- Unity3D GPUDriven渲染详解
Thomas_YXQ
开发语言Unity3D架构游戏Unity
前言Unity3D中的GPUDriven渲染技术是一种通过最大化GPU的利用,减少CPU负担,从而提高渲染效率和帧率的方法。其核心思想是将更多的渲染任务转移到GPU上,充分利用现代图形硬件(显卡)的性能。以下是该技术的几个关键组件和它们的作用:对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!1.BatchRendererGroup(BRG)BRG是Unity中用于批处理渲
- 软考架构-架构风格
zyhJhon
架构
一、概念:风格就是架构的模式,比如C/S、B/S架构,比如现实生活中的中式风格、欧式风格描述某一特定应用领域中系统组织的方式软件架构风格反映了领域中众多系统所共有的结构和语义特性,并指导如何将各个模块和子系统有效地组织成一个完整的系统。架构设计的核心问题是能否达到架构级的软件复用架构风格定义了用于描述系统的术语表和一组指导构架系统的规则二、风格分类架构风格考点说明数据流-批处理传统编译器,每个阶段
- 解决“Python中 pip不是内部或外部命令,也不是可运行的程序或批处理文件”的方法。
གཡུ །
Python常规问题pythonpip机器学习自然语言处理
解决‘Python中pip不是内部或外部命令,也不是可运行的程序或批处理文件。’的方法1、pip是什么?pip是一个以Python计算机程序语言写成的软件包管理系统,他可以安装和管理软件包,另外不少的软件包也可以在“Python软件包索引”中找到。它可以通过cmd(命令提示符)非常方便地下载和管理Python第三方库,比如,Python爬虫中常见的requests库等。但是我们在使用cmd运行pi
- ‘pip‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。
逆天小北鼻
pythonpip
因为python13不支持pipinstallcx_Oracle,卸载了python13,重新安装python10,导致cmd命令不识别pip,和python10,(;´༎ຶД༎ຶ`)记录一种临时方案如果你的命令行界面(cmd)不识别pip命令,这通常意味着pip的可执行文件路径没有被添加到系统的环境变量中,或者环境变量的设置没有正确生效。重新检查pip的安装路径在命令行中运行以下Python代码
- pip‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。
knighthood2001
pip
重新设置一下环境变量。注意,这里后面没有斜杠我之前就是因为环境变量中,这两行最后都有斜杠,导致提示pip‘不是内部或外部命令,也不是可运行的程序或批处理文件。
- 多道程序设计和分时
yanlingyun0210
操作系统操作系统
分类:(3类)多道程序设计分时简单批处理一些其他补充1多道程序设计1.设计起因:单用户通常不能总使cpu和设备在所有时间都忙碌。2.概念:在内存中同时存在多道作业,在管理程序的控制下“相互穿插运行”(交替运行)3.目的:提高cpu的利用率,充分发挥并行性。2分时(多任务)(时间片)1.分时系统:一种联机的多用户交互式操作系统(其实是多道程序设计的延伸)(每个用户都能实时得到服务)(unix就是常见
- 还不懂java六角结构的看过来
套马杆的程序员
总览六角体系结构是一种软件体系结构,它使应用程序可以由用户,程序,自动测试或批处理脚本平等驱动,并且可以独立于其运行时目标系统进行开发。目的是创建一个无需用户界面或数据库即可运行的应用程序,以便我们可以对该应用程序运行自动回归测试,在运行时系统(例如数据库)不可用时使用该应用程序,或无需用户界面即可集成应用程序。动机许多应用程序有两个目的:用户端和服务器端,通常以两层,三层或n层体系结构设计。n层
- 第3篇:LangChain的架构总览与设计理念
Gemini技术窝
langchain架构大数据人工智能AIGCnlp
LangChain库是一个专为自然语言处理(NLP)设计的强大工具包,致力于简化复杂语言模型链的构建和执行。在本文中,我们将深入解析LangChain库的架构,详细列出其核心组件、设计理念及其在不同场景中的应用,并讨论其优缺点。文章目录1.LangChain库简介2.核心组件2.1数据输入模块作用2.2数据预处理模块作用2.3数据增强模块作用2.4数据加载与批处理模块作用2.5模型训练模块作用2.
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 系统架构风格
Vincer_DB
软考
所有架构风格汇总如下:类别架构风格名常考关键字及实例简介数据流批处理传统编译器,每个阶段产生的结果作为下一阶段的输入,区别在于整体。一个接一个,以整体为单位管道-过滤器一个接一个,前一个输出是后一个输入。调用/返回主/子程序显式调用,主程序直接调用子程序面向对象对象是构件,通过对象调用封装的方法和属性层次结构分层,每层最多影响其上下两层,有调用关系独立构件进程通信进程间独立消息传递,同步异步事件驱
- linux多个sh 同时执行命令,sh, 批量执行Linux命令
一颗橙子君
linux多个sh同时执行命令
step1:创建一个sh批处理命令文件#vim/etc/batch_ssh/install_redis.shstep2:给当前用户,能够执行sh脚本权限#chmodinstall_redis.sh777step3:编写要批量执行的命令,read表示等待前端用户输入,sleep表示等待时间单位为秒。echo'\nbegintoinstall01plugin\n';yuminstallcpp-y;ec
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- Spark底层逻辑
傲雪凌霜,松柏长青
大数据后端spark大数据
ApacheSpark的底层逻辑可以从其核心概念、组件和执行流程等方面来理解。Spark提供了一个分布式数据处理框架,其底层逻辑基于批处理架构,能够在大规模集群中高效地处理数据。以下是Spark的底层逻辑的详细介绍:1.核心概念Spark的底层基于几个核心概念来实现分布式计算,包括:RDD(ResilientDistributedDataset,弹性分布式数据集):RDD是Spark最基础的数据抽
- Apache Flink:实时流处理与批处理的统一框架
小码快撩
flink大数据
导语在大数据处理领域,流处理和批处理是两种主要的处理方式。然而,传统的系统通常将这两者视为独立的任务,需要不同的工具和框架来处理。ApacheFlink是一个开源的流处理框架,它打破了这种界限,提供了一个统一的平台来处理实时流数据和批处理数据。一、基本概念与架构ApacheFlink的基本概念与架构主要包括以下几个核心组成部分:基本概念1.流处理模型:无界流(UnboundedStreams):数
- Adam优化器:深度学习中的自适应方法
2401_85743969
深度学习人工智能
引言在深度学习领域,优化算法是训练神经网络的核心组件之一。Adam(AdaptiveMomentEstimation)优化器因其自适应学习率调整能力而受到广泛关注。本文将详细介绍Adam优化器的工作原理、实现机制以及与其他优化器相比的优势。深度学习优化器概述优化器在深度学习中负责调整模型的参数,以最小化损失函数。常见的优化器包括SGD(随机梯度下降)、RMSprop、AdaGrad、AdaDelt
- 2019-01-05
暖心_85a8
和弟弟去找药材,他说昔日的娇滴滴变成了女汉子。做事一向比较谨慎,从不给自己懒惰的理由,凡事喜欢亲力亲为。这样放心。信任源于人品的靠谱,更多时候,是做事的靠谱,我不能丢失那份信任,所以更要好好做。选品的路很难走,蹲在地上,我一点点的慢慢挑,这样自己才能放心。有人说我这样不划算,但是我不为所动,我知道什么对我最重要。路很难走,信任更难累积,所以我小心维护,只因它真的好珍贵。
- 如何在Java中实现高效的分布式梯度下降算法
省赚客app开发者
java分布式算法
如何在Java中实现高效的分布式梯度下降算法大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在本文中,我们将探讨如何在Java中实现高效的分布式梯度下降算法。分布式梯度下降(DistributedGradientDescent)是一种常用于训练大规模机器学习模型的优化方法,特别是在处理大规模数据集时非常有效。本文将介绍如何设计和实现这一算法,以提高训练效率。分布式梯度
- 2019-01-05晨间日记及学习心得
小小效能
今天是什么日子起床:6:20就寝:22:30天气:阵雨温度:3-9日出:7:42日落:18:13任务清单昨日反思:找到自己的不足然后改进它,即使是根深蒂固的坏习惯也能通过一次一点点的改变,慢慢松动,消失。习惯养成:早起、锻炼、日反思学习·信息·阅读时间管理100讲:第25讲心得U=(EV)/(ID),U是效率,E是对成功的信心,V是对任务和事情感到愉悦的程度,I是多容易会分心,D是多久会产生回报。
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那