Spark大型项目实战:电商用户行为分析大数据平台(高端大数据项目实战课程)_北风网
http://www.ibeifeng.com/goods-582.html
本项目主要讲解了一套应用于互联网电商企业中,使用Java、Spark等技术开发的大数据统计分析平台,对电商网站的【各种用户行为(访问行为、页面跳转行为、购物行为、广告点击行为等)进行复杂的分析】。用统计分析出来的数据,辅助公司中的PM(产品经理)、数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务。最终达到用大数据技术来帮助提升公司的业绩、营业额以及市场占有率的目标。
1.课程研发环境
开发工具: Eclipse
Linux:CentOS 6.4
Spark: 1.5.1
Hadoop: hadoop-2.5.0-cdh5.3.6
Hive: hive-0.13.1-cdh5.3.6
ZooKeeper: zookeeper-3.4.5-cdh5.3.6
Kafka: 2.9.2-0.8.1
其他工具:flume-ng-1.5.0-cdh5.3.6、SecureCRT、WinSCP、VirtualBox等
2.内容简介
项目主要采用目前大数据领域最流行、最热门的技术——Spark,具有普通项目无法比拟的技术前瞻性与尖端性。本项目使用了Spark技术生态栈中最常用的三个技术框架,Spark Core、Spark SQL和Spark Streaming,进行离线计算和实时计算业务模块的开发。实现了包括【用户访问session分析、页面单跳转化率统计、热门商品离线统计、广告点击流量实时统计4个业务模块】。
项目中所有的业务功能模块都是直接从实际企业项目中抽取出来的,业务复杂度绝对没有任何缩水,只是为了更好的贴近大数据实战课程的需要,进行了一定程度上的技术整合和业务整合。该项目的真实性、业务复杂性以及实战型,绝对不是市面上现有的仅几个课时的Demo级的大数据项目可以比拟的。
该项目完全涵盖了Spark Core、Spark SQL和Spark Streaming这三个技术框架中几乎所有的功能点、知识点以及性能优化点。仅一个项目,即可全面掌握Spark技术在实际项目中如何实现各种类型的业务需求!在项目中,重点讲解了实际企业项目中积累下来的宝贵的性能调优、troubleshooting以及数据倾斜解决方案等知识和技术,几乎所有知识和技术都是全网唯一,是任何其他视频课程以及书本中都没有包含的珍贵经验积累!同时以企业级大数据项目开发流程贯穿每个业务模块的讲解,涵盖了项目开发全流程,包括需求分析、方案设计、数据设计、编码实现、测试以及性能调优等环节,全面还原真实大数据项目的开发流程。该项目的整体商业价值绝对在百万元以上!
//
备注一:关于《Spark从入门到精通(Scala编程、案例实战、高级特性、Spark内核源码剖析、Hadoop高端)》与本套课程的关系,如果学习了第一套Spark技术课程,那么在融会贯通的情况下,可以达到12年Spark开发经验的水平;如果在学习完第一套Spark课程,同时学习完第二套Spark项目课程,并且融会贯通的情况下,那么可以达到23年的Spark开发经验的水平,成为Spark高级/资深开发工程师。
在真正大型复杂的项目中,可能Spark需要管理大量的组件,此时可能需要用Spring框架;可能需要执行复杂的数据库操作,此时需要ORM类框架,比如MyBatis;可能需要与Redis、Kafka、ZooKeeper整合使用,此时需要使用Java Client API;以上需求都是Scala满足不了的。使用Scala很可能会导致项目的多语言混编,造成可维护性和可扩展性大幅度降低。(注意,本套项目课程为了降低学习难度,并且聚焦在Spark上,没有使用以上任何技术,只是用纯粹的Java基础编程与Spark技术;但是这并不意味着你在真正的工作中不会碰到上述的情况)
//
9、大量的全网唯一的高端技术:【自定义Accumulator、按时间比例随机抽取算法、二次排序、分组取topN、页面切片生成以及页面流匹配算法、Hive与MySQL异构数据源、RDD转换为DataFrame、注册和使用临时表、自定义UDAF聚合函数(group_concat_distinct)、自定义get_json_object等普通函数、Spark SQL的高级内置函数(if与case when等)、开窗函数(ROW_NUMBER)、动态黑名单机制、transform、updateStateByKey、transform与Spark SQL整合、window滑动窗口、高性能写数据库,等等。】
//
一、大数据集群搭建
第1讲-课程介绍
第2讲-课程环境搭建:CentOS 6.4集群搭建
第3讲-课程环境搭建:hadoop-2.5.0-cdh5.3.6集群搭建
第4讲-课程环境搭建:hive-0.13.1-cdh5.3.6安装
第5讲-课程环境搭建:zookeeper-3.4.5-cdh5.3.6集群搭建
第6讲-课程环境搭建:kafka_2.9.2-0.8.1集群搭建
第7讲-课程环境搭建:flume-ng-1.5.0-cdh5.3.6安装
第8讲-课程环境搭建:离线日志采集流程介绍
第9讲-课程环境搭建:实时数据采集流程介绍
第10讲-课程环境搭建:Spark 1.5.1客户端安装以及基于YARN的提交模式
二、用户访问session分析:
第11讲-用户访问session分析:模块介绍
第12讲-用户访问session分析:基础数据结构以及大数据平台架构介绍
第13讲-用户访问session分析:需求分析
第14讲-用户访问session分析:技术方案设计
第15讲-用户访问session分析:数据表设计
第16讲-用户访问session分析:Eclipse工程搭建以及工具类说明
第17讲-用户访问session分析:开发配置管理组件
第18讲-用户访问session分析:JDBC原理介绍以及增删改查示范
第19讲-用户访问session分析:数据库连接池原理
第20讲-用户访问session分析:单例设计模式
第21讲-用户访问session分析:内部类以及匿名内部类
第22讲-用户访问session分析:开发JDBC辅助组件(上)
第23讲-用户访问session分析:开发JDBC辅助组件(下)
第24讲-用户访问session分析:JavaBean概念讲解
第25讲-用户访问session分析:DAO模式讲解以及TaskDAO开发
第26讲-用户访问session分析:工厂模式讲解以及DAOFactory开发
第27讲-用户访问session分析:JSON数据格式讲解以及fastjson介绍
第28讲-用户访问session分析:Spark上下文构建以及模拟数据生成
第29讲-用户访问session分析:【按session粒度进行数据聚合】
第30讲-用户访问session分析:按筛选参数对session粒度聚合数据进行过滤
第31讲-用户访问session分析:session聚合统计之自定义Accumulator
第32讲-用户访问session分析:session聚合统计之重构实现思路与重构session聚合
第33讲-用户访问session分析:session聚合统计之重构过滤进行统计
第34讲-用户访问session分析:session聚合统计之【计算统计结果并写入MySQL】
第35讲-用户访问session分析:session聚合统计之本地测试
第36讲-用户访问session分析:session聚合统计之使用Scala实现【自定义Accumulator】
第37讲-用户访问session分析:session随机抽取之实现思路分析
第38讲-用户访问session分析:session随机抽取之【计算每天每小时session数量】
第39讲-用户访问session分析:session随机抽取之按时间比例随机抽取算法实现
第40讲-用户访问session分析:session随机抽取之根据随机索引进行抽取
第41讲-用户访问session分析:session随机抽取之获取抽取session的明细数据
第42讲-用户访问session分析:session随机抽取之本地测试
第43讲-用户访问session分析:top10热门品类之需求回顾以及实现思路分析
第44讲-用户访问session分析:top10热门品类之获取session访问过的所有品类
第45讲-用户访问session分析:top10热门品类之【计算各品类点击、下单和支付的次数】
第46讲-用户访问session分析:top10热门品类之join品类与点击下单支付次数
第47讲-用户访问session分析:top10热门品类之自定义二次排序key
第48讲-用户访问session分析:top10热门品类之进行二次排序
第49讲-用户访问session分析:top10【热门品类之获取top10品类并写入MySQL
第50讲-用户访问session分析:top10热门品类之本地测试
第51讲-用户访问session分析:top10热门品类之使用Scala实现二次排序
第52讲-用户访问session分析:top10活跃session之开发准备以及top10品类RDD生成
第53讲-用户访问session分析:top10活跃session之计算top10品类被各sessoin点击的次数
第54讲-用户访问session分析:top10活跃session之分组取TopN算法获取top10活跃session
第55讲-用户访问session分析:top10活跃session之本地测试以及阶段总结
三、企业级性能调优、troubleshooting经验与数据倾斜解决方案:
第56讲-用户访问session分析:性能调优之在实际项目中分配更多资源
第57讲-用户访问session分析:性能调优之在实际项目中调节并行度
第58讲-用户访问session分析:性能调优之在实际项目中重构RDD架构以及RDD持久化
第59讲-用户访问session分析:性能调优之在实际项目中广播大变量
第60讲-用户访问session分析:性能调优之在实际项目中使用Kryo序列化
第61讲-用户访问session分析:性能调优之在实际项目中使用fastutil优化数据格式
第62讲-用户访问session分析:性能调优之在实际项目中调节数据本地化等待时长
第63讲-用户访问session分析:JVM调优之原理概述以及降低cache操作的内存占比
第64讲-用户访问session分析:JVM调优之调节executor堆外内存与连接等待时长
第65讲-用户访问session分析:Shuffle调优之原理概述
第66讲-用户访问session分析:Shuffle调优之合并map端输出文件
第67讲-用户访问session分析:Shuffle调优之调节map端内存缓冲与reduce端内存占比
第68讲-用户访问session分析:Shuffle调优之HashShuffleManager与SortShuffleManager
第69讲-用户访问session分析:算子调优之MapPartitions提升Map类操作性能
第70讲-用户访问session分析:算子调优之filter过后使用coalesce减少分区数量
第71讲-用户访问session分析:算子调优之使用foreachPartition优化写数据库性能
第72讲-用户访问session分析:算子调优之使用repartition解决Spark SQL低并行度的性能问题
第73讲-用户访问session分析:算子调优之reduceByKey本地聚合介绍
第74讲-用户访问session分析:troubleshooting之控制shuffle reduce端缓冲大小以避免OOM
第75讲-用户访问session分析:troubleshooting之解决JVM GC导致的shuffle文件拉取失败
第76讲-用户访问session分析:troubleshooting之解决YARN队列资源不足导致的application直接失败
第77讲-用户访问session分析:troubleshooting之解决各种序列化导致的报错
第78讲-用户访问session分析:troubleshooting之解决算子函数返回NULL导致的问题
第79讲-用户访问session分析:troubleshooting之解决yarn-client模式导致的网卡流量激增问题
第80讲-用户访问session分析:troubleshooting之解决yarn-cluster模式的JVM栈内存溢出问题
第81讲-用户访问session分析:troubleshooting之错误的持久化方式以及checkpoint的使用
第82讲-用户访问session分析:数据倾斜解决方案之原理以及现象分析
第83讲-用户访问session分析:数据倾斜解决方案之聚合源数据以及过滤导致倾斜的key
第84讲-用户访问session分析:数据倾斜解决方案之提高shuffle操作reduce并行度
第85讲-用户访问session分析:数据倾斜解决方案之使用随机key实现双重聚合
第86讲-用户访问session分析:数据倾斜解决方案之将reduce join转换为map join
第87讲-用户访问session分析:数据倾斜解决方案之sample采样倾斜key单独进行join
第88讲-用户访问session分析:数据倾斜解决方案之使用随机数以及扩容表进行join
四、页面单跳转化率统计:
第89讲-页面单跳转化率:模块介绍
第90讲-页面单跳转化率:需求分析、技术方案设计、数据表设计
第91讲-页面单跳转化率:编写基础代码
第92讲-页面单跳转化率:页面切片生成以及页面流匹配算法实现
第93讲-页面单跳转化率:计算页面流起始页面的pv
第94讲-页面单跳转化率:计算页面切片的转化率
第95讲-页面单跳转化率:将页面切片转化率写入MySQL
第96讲-页面单跳转化率:本地测试
第97讲-页面单跳转化率:生产环境测试
第98讲-用户访问session分析:生产环境测试
五、各区域热门商品统计:
第99讲-各区域热门商品统计:模块介绍
第100讲-各区域热门商品统计:需求分析、技术方案设计以及数据设计
第101讲-各区域热门商品统计:查询用户指定日期范围内的点击行为数据
第102讲-各区域热门商品统计:异构数据源之从MySQL中查询城市数据
第103讲-各区域热门商品统计:关联城市信息以及RDD转换为DataFrame后注册临时表
第104讲-各区域热门商品统计:开发自定义UDAF聚合函数之group_concat_distinct()
第105讲-各区域热门商品统计:查询各区域各商品的点击次数并拼接城市列表
第106讲-各区域热门商品统计:关联商品信息并使用自定义get_json_object函数和内置if函数标记经营类型
第106讲-各区域热门商品统计:使用【开窗函数统计各区域的top3热门商品】
第107讲-各区域热门商品统计:使用内置case when函数给各个区域打上级别标记
第108讲-各区域热门商品统计:将结果数据写入MySQL中
第109讲-各区域热门商品统计:Spark SQL数据倾斜解决方案
第110讲-各区域热门商品统计:生产环境测试
六、广告点击流量实时统计:
第111讲-广告点击流量实时统计:需求分析、技术方案设计以及数据设计
第112讲-广告点击流量实时统计:为【动态黑名单】实时计算每天各用户对各广告的点击次数
第113讲-广告点击流量实时统计:使用高性能方式将实时计算结果写入MySQL中
第114讲-广告点击流量实时统计:过滤出每个batch中的黑名单用户以生成动态黑名单
第115讲-广告点击流量实时统计:基于动态黑名单进行点击行为过滤
第116讲-广告点击流量实时统计:计算每天【各省各城市各广告的点击量】
第117讲-广告点击流量实时统计:计算每天【各省的top3】热门广告
第118讲-广告点击流量实时统计:计算每天各广告最近1小时滑动窗口内的点击趋势
第119讲-广告点击流量实时统计:实现实时计算程序的HA高可用性
第120讲-广告点击流量实时统计:对实时计算程序进行性能调优
第121讲-广告点击流量实时统计:生产环境测试
第122讲-课程总结:都学到了什么?
//
(新升级)Spark 2.0从入门到精通:Scala编程、大数据开发、上百个实战案例、内核源码深度剖析_北风网
http://www.ibeifeng.com/goods-560.html