- 数学分析(十八)-隐函数定理及其应用1-隐函数4:隐函数极值问题
u013250861
数学分析数学分析
f′(x)=−Fx(x,y)Fy(x,y)(5)f^{\prime}(x)=-\cfrac{F_{x}(x,y)}{F_{y}(x,y)}\quad\quad(5)f′(x)=−Fy(x,y)Fx(x,y)(5)y′′=−1Fy(Fxx+2Fxyy′+Fyyy′2)=2FxFyFxy−Fy2Fxx−Fx2FyyFy3,(
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- Python实现快速傅里叶变换(FFT)
haodawei123
工作总结
importnumpyasnpimportmatplotlib.pyplotasplt#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采#样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=7np.sin(2np.p
- 如何理解,在数学上完备的 这样的描述?
fK0pS
经验分享
如何理解,在数学上完备的这样的描述?在数学中,"完备"这一术语具有多个含义,具体取决于它应用的上下文。以下是几个常见领域中“完备”的定义和理解:完备性定理(逻辑与数学基础):在逻辑和数学基础中,特别是与形式语言和证明系统相关的领域,完备性通常指的是一个系统能够证明所有在该系统内部被认为是“真”的命题。换句话说,如果一个命题在某个逻辑系统中是真的(即,在所有模型中为真),则该系统应该能够提供一个证明
- Spring Boot在Java领域的分布式系统应用
Java技术栈实战
javaspringbootwpfai
SpringBoot在Java领域的分布式系统应用关键词:SpringBoot、分布式系统、微服务架构、服务治理、分布式配置、服务容错、Java开发摘要:本文系统解析SpringBoot在Java分布式系统中的核心应用,从基础架构到高级实践逐层展开。首先阐述分布式系统核心概念与SpringBoot的技术优势,通过CAP定理、一致性模型等理论构建技术框架;然后结合具体代码示例讲解服务注册发现、配置管
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- [信号与系统]IIR滤波器与FIR滤波器的表达、性质以及一些分析
庭师_Official
信号与系统信号与系统信号处理
前言阅读本文需要阅读一些前置知识[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。[信号与系统]有关滤波器的一些知识背景[信号与系统]关于LTI系统的转换方程、拉普拉斯变换和z变换[信号与系统]关于双线性变换IIR滤波器的数学表达式IIR(InfiniteImpulseResponse)滤波器的输出信号y[n]y[n]y[n]可以用输入信号x[n]x[n]x[n]和滤波器系数表示
- 数学:什么是余弦定理?
千码君2016
数学几何原本几何构造法向量点积法坐标系解析法反推角的大小合力大小文本向量相似性度量
余弦定理是欧氏平面几何学基本定理,它是勾股定理的推广,描述了任意三角形中三条边和一个角的余弦之间的关系。具体内容如下:历史渊源:对余弦定理的研究可追溯到公元前3世纪欧几里得的《几何原本》,但最初它只是以几何定理的身份出现。直到16世纪,法国数学家韦达首次写出了三角形式的余弦定理。17-18世纪,对余弦定理的应用不多,直到19-20世纪,余弦定理才得到广泛应用。应用场景:在解三角形问题中,若已知三边
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- Power Strings POJ - 2406(kmp算法求最小循环节)
poj-2406题目大意:给出一个字符串问它最多由多少相同的字串组成如abababab由4个ab组成题目分析:要用到KMP中的next数组来计算最小循环节。KMP最小循环节、循环周期:定理:假设S的长度为len,则S存在最小循环节,循环节的长度L为len-next[len],子串为S[0…len-next[len]-1]。(1)如果len可以被len-next[len]整除,则表明字符串S可以完全
- 08 Redis之集群的搭建和复制原理+哨兵机制+CAP定理+Raft算法
5Redis集群2.8版本之前,Redis采用主从集群模式.实现了数据备份和读写分离2.8版本之后,Redis采用Sentinel哨兵集群模式,实现了集群的高可用5.1主从集群搭建首先,基本所有系统,“读”的压力都大于“写”的压力Redis的主从集群是一个“一主多从”的读写分离集群(运用哨兵机制后会升级为3主多从)。集群中的Master节点负责处理客户端的读写请求,而Slave节点仅能处理客户端的
- 深度学习——激活函数
笨小古
深度强化学习深度学习人工智能
深度学习——激活函数激活函数是人工是人工神经网络中一个关键的组成部分,它被设计用来引入非线性特性到神经网络模型中,使神经网络能够学习和逼近复杂的非线性映射关系。1.引入非线性能力没有激活函数的神经网络本质上只是线性变换的叠加,无论多少层也只能表示线性函数,能力有限。激活函数使网络可以逼近任意复杂函数(依据万能逼近定理)2.控制信息流动某些激活函数可以抑制部分神经元的输出(如ReLU),是模型更稀疏
- 相机标定与校正原理及代码(Python、C++)实现
吃旺旺雪饼的小男孩
自动驾驶pythonc++自动驾驶
相机标定与校正一、相机标定理论背景1.1相机模型1.2畸变模型二、详细标定流程2.1数据采集2.2角点提取2.3构造对应关系2.4标定求解2.5图像校正2.6标定精度分析三、Python代码详细示例四、C++代码详细示例五、常见问题与注意事项六、总结一、相机标定理论背景1.1相机模型针孔模型:相机可以用针孔模型描述,即假设所有光线都通过一个单一的光心,然后在成像平面上成像。该模型定义了相机的内参和
- 扩展欧几里得算法求逆元
hesorchen
#扩展欧几里得算法#逆元
扩展欧几里得算法应该是最优的求逆元算法之一,他和费马小定理具有同样的时间复杂度O(log(n))O(log(n))O(log(n)),但是费马小定理需要模数为质数,扩展欧几里得算法则不需要。逆元定义若aaa与ppp互素,则满足(a×x)modp=1(a\timesx)modp=1(a×x)modp=1的xxx为aaa的逆元。显然,有(k×p+1)modp=1(k\timesp+1)modp=1(k
- 读书笔记—颠覆式创新:移动互联网时代的生存法则
weixin_33688840
操作系统嵌入式移动开发
颠覆式创新:移动互联网时代的生存法则作者:李善友引言有一个非常著名的哥德尔第一定理。它这样讲:任何一个体系,它必是内部和外部自洽的,这样才能有效运行。但是任何一个内部逻辑完全自洽的体系,一定存在自身的边界,一旦越过边界,这套体系一定是失效的,边界外是另一个新的体系。哥德尔是一个数学家,他的体系是一个纯粹的数学体系,即便是这样的数学体系,也会存在逻辑陷阱,何况其他体系呢?我们生活在一个已知的世界,往
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- 大数定律与中心极限定理:概率论的双子星
Algo-hx
概率论与数理统计概率论
目录引言5大数定律与中心极限定理5.1大数定律:频率的稳定性5.1.1辛钦大数定律定理内容5.1.2伯努利大数定律定理内容5.1.3切比雪夫大数定律定理内容对比总结表5.2中心极限定理:正态分布的普适性5.2.1独立同分布情形定理内容图释5.2.2李雅普诺夫定理定理内容核心思想图释5.2.3棣莫弗-拉普拉斯定理定理内容应用条件图释对比总结表5.3定理对比:LLNvsCLT引言当随机现象的个体行为无
- 通信之PCM
玖Yee
信息与通信
PCM即脉冲编码调制,是一种将模拟信号转换为数字信号的技术。原理-采样:对模拟信号按一定的时间间隔进行采样,获取离散的样本值。根据奈奎斯特采样定理,采样频率应不低于模拟信号最高频率的两倍,以保证能够无失真地恢复原始信号。-量化:将采样得到的样本值按照一定的量化等级进行量化,将其映射到有限个离散的数值上。量化过程会引入量化误差,量化等级越多,量化误差越小,信号还原度越高。-编码:把量化后的数值用二进
- 网络流总结
癹魃♭
图论算法
目录一些概念最大流最大流—最小割定理算法实现——FF增广EK算法Dinic算法经典模型1.1无源汇上下界可行流1.2有源汇上下界可行流1.3有源汇上下界最大流1.3有源汇上下界最小流一些trick最小割求法模型求割边数量基本模型平面图最小割转对偶图最短路最大权闭合图最大密度子图最小点权覆盖集最大点权独立集最小路径覆盖文理分科模型切糕模型(距离限制模型)最小割树费用流求法建模技巧拆点有源汇上下界最小
- 探索依赖类型:从理论到实践
t0_54program
大数据与人工智能个人开发
在编程语言的广袤世界里,依赖类型(DependentTypes)宛如一颗璀璨的明珠,逐渐吸引着众多开发者的目光。它不仅为我们带来了更为精确和灵活的类型表达,还在定理证明、元编程等领域展现出了巨大的潜力。依赖类型的定义与理解依赖类型,简单来说,就是类型可以依赖于值。在传统的编程语言如Haskell和Java中,我们常见的是类型依赖于其他类型,比如List类型需要指定其内部元素的类型,像ListofI
- 【概率论】正态分布的由来——从大一同学的视角出发
应有光
基础知识概率论机器学习
数学系大佬勿喷,本文以非数同学的视角出发0.启发与思考正态分布平时常常遇到,无论是在概率论中的“中心极限定理”,还是平时在学习ML中遇到的“高斯混合模型”,或者是在深度学习中,常常将一些数据假设为正态分布的情况。我们平时可能由于知到中心极限定理,因此默认正态分布是一个很好的分布。但是,这为什么不能是平均分布呢?二项分布呢?泊松分布?或者是其它抽样分布?接下来我们将简要探讨正态分布的由来:1.背景我
- 机器学习新手指南:用Python实现贝叶斯方法与概率模型
人工智能教程
机器学习python人工智能深度学习cnn自然语言处理分类
在机器学习的世界里,贝叶斯方法和概率模型是一类非常重要的工具。它们通过概率的方式来建模和解决问题,能够提供对数据的深刻理解和预测的不确定性估计。今天,我们将从零开始,用Python实现一个简单的贝叶斯分类器,带你走进贝叶斯方法的世界!一、贝叶斯方法与概率模型:初识(一)什么是贝叶斯方法?贝叶斯方法是一种基于贝叶斯定理的统计方法,它通过结合先验知识和数据来更新对问题的理解。贝叶斯定理的核心公式如下:
- 【大模型学习路线首发】 AI大模型学习路线:(非常详细)AI大模型学习路线,收藏这一篇就够了!
AI大模型-大飞
人工智能学习程序员大模型学习AI大模型大模型大模型教程
1.打好基础:数学与编程数学基础线性代数:理解矩阵、向量、特征值、特征向量等概念。推荐课程:KhanAcademy的线性代数课程、MIT的线性代数公开课。微积分:掌握导数、积分、多变量微积分等基础知识。推荐课程:KhanAcademy的微积分课程、MIT的微积分公开课。概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。推荐课程:KhanAcademy的概率与统计课程、Coursera的“Pro
- 大矩阵可以分解为低秩矩阵的乘积
二分掌柜的
数学物理矩阵线性代数
大矩阵可以分解为低秩矩阵的乘积flyfish核心结论:矩阵的秩分解定理任何矩阵均可分解为两个秩等于其自身秩的矩阵的乘积。设矩阵A∈Rm×nA\in\mathbb{R}^{m\timesn}A∈Rm×n的秩为rrr,则存在矩阵B∈Rm×rB\in\mathbb{R}^{m\timesr}B∈Rm×r和C∈Rr×nC\in\mathbb{R}^{r\timesn}C∈Rr×n,使得A=BCA=BCA=
- 样本与抽样分布:统计推断的基石
Algo-hx
概率论与数理统计概率论
目录引言6样本与抽样分布6.1总体与样本核心概念6.2统计量:样本的数学摘要定义常用统计量重要性质证明:E(S2)=σ2E(S^2)=\sigma^2E(S2)=σ26.3三大抽样分布:统计推断的支柱6.3.1χ2\chi^2χ2分布:多个独立标准正态分布变量的平方和定义性质6.3.2ttt分布(学生氏分布)定义性质6.3.3FFF分布定义性质6.4正态总体的抽样分布定理6.4.1单正态总体情形6
- 本地离线部署文生视频cogVideo
先看部署成功后,简单训练的结果cogvideo训练31.下载项目到本地gitclonehttps://github.com/THUDM/CogVideo.gitcdCogVideo建立虚拟环境python-mvenvcogvenvsourcecogvenv/bin/activate2.安装依赖pipinstall-rrequirements.txt-ihttps://pypi.tuna.tsing
- NewSQL 架构设计:如何实现高性能与高可用性
AI天才研究院
ai
NewSQL架构设计:如何实现高性能与高可用性关键词:NewSQL、分布式数据库、高性能、高可用性、ACID、CAP定理、分布式事务摘要:本文将深入解析NewSQL数据库的核心设计思想,通过生活类比、技术原理解读和实战案例,系统讲解其如何在保证传统关系型数据库ACID特性的同时,实现NoSQL级别的扩展性与高可用性。我们将从核心概念、架构设计、关键技术(如分布式事务、一致性协议)到实际应用场景,逐
- 高等代数(四)-矩阵03:矩阵乘积的行列式与秩
u013250861
高等代数矩阵线性代数
§3§3§3矩阵乘积的行列式与秩在这一节我们来看一下矩阵乘积的行列式与秩和它的因子的行列式与秋的关系.关于乘积的行列式有定理1设A,B\boldsymbol{A},\boldsymbol{B}A,B是数域PPP上的两个n×nn\timesnn×n矩阵,那么∣AB˙∣=∣A∣∣B∣.|\dot{AB}|=|A||B|\text{.}∣AB˙∣=∣A∣∣B∣.即矩阵乘积的行列式等于它的因子的行列式的乘
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默